# How to Multiply Matrix? (+FREE Worksheet!)

Here is a step-by-step guide to multiply matrices. The exercises can help you measure your knowledge of matrix multiplication.

## Related Topics

## Step by step guide to multiply matrices

- Step 1: Make sure that it’s possible to multiply the two matrices (the number of columns in the 1st one should be the same as the number of rows in the second one.)
- Step 2: The elements of each row of the first matrix should be multiplied by the elements of each column in the second matrix.
- Step 3: Add the products.

### Matrix Multiplication – Example 1:

\(\begin{bmatrix}-5 & -5 \\-1 & 2 \end{bmatrix}\)\(\begin{bmatrix}-2 & -3 \\3 & 5 \end{bmatrix}\)

**Solution:**

Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-5)(-2)+(-5)(3) & (-5)(-3)+(-5)(5) \\(-1)(-2)+(2)(3) & (-1)(-3)+(2)(5) \end{bmatrix}= \begin{bmatrix}(10)+(-15) & (15)+(-25) \\(2)+(6) & (3)+(10) \end{bmatrix}=\begin{bmatrix}-5 & -10 \\8 & 13 \end{bmatrix}\)

### Matrix Multiplication – Example 2:

\(\begin{bmatrix}-4 & -6&-6 \\0 & 6&3 \end{bmatrix}\begin{bmatrix}0 \\-3 \\0 \end{bmatrix}\)

**Solution**:

Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-4)(0)+(-6)(-3)+(-6)(0) \\(0)(0)+(6)(-3)+(3)(0) \end{bmatrix}=\begin{bmatrix}0+18+0 \\0-18+0 \end{bmatrix}=\begin{bmatrix}18 \\-18 \end{bmatrix}\)

### Matrix Multiplication – Example 3:

\(\begin{bmatrix}1 & 3 \\2 & 4 \end{bmatrix}\)\(\begin{bmatrix}2 &4 \\-2 & 1 \end{bmatrix}\)

**Solution**:

\(\begin{bmatrix}(1) (2)+(3)(-2) & (1) (4)+(3) (1) \\(2) (2)+ (4)(-2) & (2) (4)+(4) (1) \end{bmatrix}=\begin{bmatrix}(2)+(-6) & (4)+(3) \\(4)+ (-8) & (8)+(4) \end{bmatrix}=\begin{bmatrix}-4 & 7 \\-4 & 12 \end{bmatrix}\)

### Matrix Multiplication – Example 4:

\(\begin{bmatrix}2 & -1&-1 \\3 & 1&5 \end{bmatrix}\begin{bmatrix}-2 \\-1 \\4 \end{bmatrix}\)

**Solution**:

Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(2)(-2)+(-1)(-1)+(-1) (4)\\(3)(-2)+(1)(-1)+(5) (4) \end{bmatrix}=\begin{bmatrix}(-4)+(1)+(-4)\\(-6)+(-1)+(20) \end{bmatrix}=\begin{bmatrix}-7 \\13 \end{bmatrix}\)

## Exercises for Multiplying Matrix

### Solve.

- \(\color{blue}{\begin{bmatrix}0 & 2 \\-2 & -5 \end{bmatrix}\begin{bmatrix}6 & -6 \\3 & 0 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}3 & -1 \\-3 & 6\\-6&-6 \end{bmatrix}\begin{bmatrix}-1 & 6 \\5 & 4\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}0 & 5 \\-3 & 1\\-5&1 \end{bmatrix}\begin{bmatrix}-4 & 4 \\-2 & -4\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}5 & 3&5 \\1 & 5&0 \end{bmatrix}\begin{bmatrix}-4 & 2 \\-3 & 4\\3&-5 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}4 & 5 \\-4 & 6\\-5&-6 \end{bmatrix}\begin{bmatrix}4 & 6 \\6& 2\\-4&1 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-2 & -6 \\-4 & 3\\5&0 \\4&-6\end{bmatrix}\begin{bmatrix}2 & -2&2 \\-2 &0&-3 \end{bmatrix}}\)

- \(\color{blue}{\begin{bmatrix}6 & 0 \\-27 & 12 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-8 & 14 \\33 & 6\\ -24&-60\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-10 & -20 \\10 & -16\\ 18&-24\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-14 & -3 \\-19 & 22 \end{bmatrix}}\)
- \(\color{blue}{Undefined}\)
- \(\color{blue}{\begin{bmatrix}8 & 4&14\\-14 & 8&-17\\10&-10&10 \\20&-8&26\end{bmatrix}}\)

### More math articles

- Top 10 TABE Math Practice Questions
- Full-Length 8th Grade Common Core Math Practice Test
- ASTB Math Worksheets: FREE & Printable
- 6th Grade MEA Math Worksheets: FREE & Printable
- 5th Grade Common Core Math Practice Test Questions
- 3rd Grade ACT Aspire Math Practice Test Questions
- 3rd Grade MCAS Math Worksheets: FREE & Printable
- Properties of Limits
- 5th Grade PSSA Math Worksheets: FREE & Printable
- Top 10 Tips to Create a TSI Math Study Plan

## What people say about "How to Multiply Matrix? (+FREE Worksheet!)"?

No one replied yet.