Matrix Multiplication

Matrix Multiplication

Here is a step by step guide to multiply matrices. The exercises can help you measure your knowledge of matrix multiplication.

Step by step guide to multiply matrices

  • Step 1: Make sure that it’s possible to multiply the two matrices (the number of columns in the 1st one should be the same as the number of rows in the second one.)
  • Step 2: The elements of each row of the first matrix should be multiplied by the elements of each column in the second matrix.
  • Step 3: Add the products.

Example 1:

\(\begin{bmatrix}-5 & -5 \\-1 & 2 \end{bmatrix}\)\(\begin{bmatrix}-2 & -3 \\3 & 5 \end{bmatrix}\)

Solution:

Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-5)(-2)+(-5).3 & (-5)(-3)+(-5).5 \\(-1)(-2)+2.3 & (-1)(-3)+2.5 \end{bmatrix}=\begin{bmatrix}-5 & -10 \\8 & 13 \end{bmatrix}\)

Example 2:

\(\begin{bmatrix}-4 & -6&-6 \\0 & 6&3 \end{bmatrix}\begin{bmatrix}0 \\-3 \\0 \end{bmatrix}\)

Solution:

Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-4).0+(-6)(-3)+(-6).0 \\0.0+6(-3)+3.0 \end{bmatrix}=\begin{bmatrix}18 \\-18 \end{bmatrix}\)

Example 3:

\(\begin{bmatrix}1 & 3 \\2 & 4 \end{bmatrix}\)\(\begin{bmatrix}2 &4 \\-2 & 1 \end{bmatrix}\)

Solution:

\(\begin{bmatrix}1 .2+3(-2) & 1 .4+3 .1 \\2 .2+ 4(-2) & 2 .4+4 .1 \end{bmatrix}=\begin{bmatrix}-4 & 7 \\-4 & 12 \end{bmatrix}\)

Example 4:

\(\begin{bmatrix}2 & -1&-1 \\3 & 1&5 \end{bmatrix}\begin{bmatrix}-2 \\-1 \\4 \end{bmatrix}\)

Solution:

Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}2(-2)+(-1)(-1)+(-1) .4\\3(-2)+1 .(-1)+5 .4 \end{bmatrix}=\begin{bmatrix}-7 \\13 \end{bmatrix}\)

Exercises

Solve.

  1. \(\begin{bmatrix}0 & 2 \\-2 & -5 \end{bmatrix}\begin{bmatrix}6 & -6 \\3 & 0 \end{bmatrix}\)
  2. \(\begin{bmatrix}3 & -1 \\-3 & 6\\-6&-6 \end{bmatrix}\begin{bmatrix}-1 & 6 \\5 & 4\end{bmatrix}\)
  3. \(\begin{bmatrix}0 & 5 \\-3 & 1\\-5&1 \end{bmatrix}\begin{bmatrix}-4 & 4 \\-2 & -4\end{bmatrix}\)
  4. \(\begin{bmatrix}5 & 3&5 \\1 & 5&0 \end{bmatrix}\begin{bmatrix}-4 & 2 \\-3 & 4\\3&-5 \end{bmatrix}\)
  5. \(\begin{bmatrix}4 & 5 \\-4 & 6\\-5&-6 \end{bmatrix}\begin{bmatrix}4 & 6 \\6& 2\\-4&1 \end{bmatrix}\)
  6. \(\begin{bmatrix}-2 & -6 \\-4 & 3\\5&0 \\4&-6\end{bmatrix}\begin{bmatrix}2 & -2&2 \\-2 &0&-3 \end{bmatrix}\)
  1. \(\begin{bmatrix}6 & 0 \\-27 & 12 \end{bmatrix}\)
  2. \(\begin{bmatrix}-8 & 14 \\33 & 6\\ -24&-60\end{bmatrix}\)
  3. \(\begin{bmatrix}-10 & -20 \\10 & -16\\ 18&-24\end{bmatrix}\)
  4. \(\begin{bmatrix}-14 & -3 \\-19 & 22 \end{bmatrix}\)
  5. Undefined
  6. \(\begin{bmatrix}8 & 4&14\\-14 & 8&-17\\10&-10&10 \\20&-8&26\end{bmatrix}\)

Related to "Matrix Multiplication"

Top 10 Grade 4 Common Core Math Practice Questions
Top 10 Grade 4 Common Core Math Practice Questions
Grade 8 ACT Aspire Math Worksheets
Grade 8 ACT Aspire Math Worksheets
Top 10 Grade 4 STAAR Math Practice Questions
Top 10 Grade 4 STAAR Math Practice Questions
Grade 8 MEAP Math Worksheets
Grade 8 MEAP Math Worksheets
Top 10 Grade 8 STAAR Math Practice Questions
Top 10 Grade 8 STAAR Math Practice Questions
Grade 8 MAP Math Worksheets
Grade 8 MAP Math Worksheets
Top 10 ALEKS Math Practice Questions
Top 10 ALEKS Math Practice Questions
Grade 8 NYSE Math Worksheets
Grade 8 NYSE Math Worksheets
Top 10 ATI TEAS 6 Math Practice Questions
Top 10 ATI TEAS 6 Math Practice Questions
Grade 8 OST Math Worksheets
Grade 8 OST Math Worksheets

Leave a Reply

Your email address will not be published. Required fields are marked *