How to Multiply Matrix? (+FREE Worksheet!)
Here is a step-by-step guide to multiply matrices. The exercises can help you measure your knowledge of matrix multiplication.

Related Topics
Step by step guide to multiply matrices
- Step 1: Make sure that it’s possible to multiply the two matrices (the number of columns in the 1st one should be the same as the number of rows in the second one.)
- Step 2: The elements of each row of the first matrix should be multiplied by the elements of each column in the second matrix.
- Step 3: Add the products.
Matrix Multiplication – Example 1:
\(\begin{bmatrix}-5 & -5 \\-1 & 2 \end{bmatrix}\)\(\begin{bmatrix}-2 & -3 \\3 & 5 \end{bmatrix}\)
Solution:
Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-5)(-2)+(-5)(3) & (-5)(-3)+(-5)(5) \\(-1)(-2)+(2)(3) & (-1)(-3)+(2)(5) \end{bmatrix}= \begin{bmatrix}(10)+(-15) & (15)+(-25) \\(2)+(6) & (3)+(10) \end{bmatrix}=\begin{bmatrix}-5 & -10 \\8 & 13 \end{bmatrix}\)
The Absolute Best Book to Ace Pre-Algebra
Matrix Multiplication – Example 2:
\(\begin{bmatrix}-4 & -6&-6 \\0 & 6&3 \end{bmatrix}\begin{bmatrix}0 \\-3 \\0 \end{bmatrix}\)
Solution:
Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(-4)(0)+(-6)(-3)+(-6)(0) \\(0)(0)+(6)(-3)+(3)(0) \end{bmatrix}=\begin{bmatrix}0+18+0 \\0-18+0 \end{bmatrix}=\begin{bmatrix}18 \\-18 \end{bmatrix}\)
Matrix Multiplication – Example 3:
\(\begin{bmatrix}1 & 3 \\2 & 4 \end{bmatrix}\)\(\begin{bmatrix}2 &4 \\-2 & 1 \end{bmatrix}\)
Solution:
\(\begin{bmatrix}(1) (2)+(3)(-2) & (1) (4)+(3) (1) \\(2) (2)+ (4)(-2) & (2) (4)+(4) (1) \end{bmatrix}=\begin{bmatrix}(2)+(-6) & (4)+(3) \\(4)+ (-8) & (8)+(4) \end{bmatrix}=\begin{bmatrix}-4 & 7 \\-4 & 12 \end{bmatrix}\)
The Absolute Best Book to Ace the College Algebra Course
Matrix Multiplication – Example 4:
\(\begin{bmatrix}2 & -1&-1 \\3 & 1&5 \end{bmatrix}\begin{bmatrix}-2 \\-1 \\4 \end{bmatrix}\)
Solution:
Multiply the rows of the first matrix by the columns of the second matrix. \(\begin{bmatrix}(2)(-2)+(-1)(-1)+(-1) (4)\\(3)(-2)+(1)(-1)+(5) (4) \end{bmatrix}=\begin{bmatrix}(-4)+(1)+(-4)\\(-6)+(-1)+(20) \end{bmatrix}=\begin{bmatrix}-7 \\13 \end{bmatrix}\)
Exercises for Multiplying Matrix
Solve.
- \(\color{blue}{\begin{bmatrix}0 & 2 \\-2 & -5 \end{bmatrix}\begin{bmatrix}6 & -6 \\3 & 0 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}3 & -1 \\-3 & 6\\-6&-6 \end{bmatrix}\begin{bmatrix}-1 & 6 \\5 & 4\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}0 & 5 \\-3 & 1\\-5&1 \end{bmatrix}\begin{bmatrix}-4 & 4 \\-2 & -4\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}5 & 3&5 \\1 & 5&0 \end{bmatrix}\begin{bmatrix}-4 & 2 \\-3 & 4\\3&-5 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}4 & 5 \\-4 & 6\\-5&-6 \end{bmatrix}\begin{bmatrix}4 & 6 \\6& 2\\-4&1 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-2 & -6 \\-4 & 3\\5&0 \\4&-6\end{bmatrix}\begin{bmatrix}2 & -2&2 \\-2 &0&-3 \end{bmatrix}}\)

- \(\color{blue}{\begin{bmatrix}6 & 0 \\-27 & 12 \end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-8 & 14 \\33 & 6\\ -24&-60\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-10 & -20 \\10 & -16\\ 18&-24\end{bmatrix}}\)
- \(\color{blue}{\begin{bmatrix}-14 & -3 \\-19 & 22 \end{bmatrix}}\)
- \(\color{blue}{Undefined}\)
- \(\color{blue}{\begin{bmatrix}8 & 4&14\\-14 & 8&-17\\10&-10&10 \\20&-8&26\end{bmatrix}}\)
The Best Books to Ace Algebra
Related to This Article
More math articles
- Math Café: How to Learn the Art of Writing and Solving Two-variable Equations
- Frequency Charts: How to Understanding Trends
- 7th Grade Mathematics Worksheets: FREE & Printable
- Differential Equations: Laws of The Universe Unraveled
- Best Touchscreen Monitors for Teaching at Home
- What Skills Do I Need for the ASVAB Math Subtests?
- Full-Length ISEE Upper-Level Math Practice Test-Answers and Explanations
- How to Overcome Praxis Core Math Anxiety?
- 7th Grade MEA Math Worksheets: FREE & Printable
- How to Prepare for the ISEE Lower Level Math Test?
What people say about "How to Multiply Matrix? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.