How to Reduce Rational Expressions to the Lowest Terms?
The rational function is defined as a polynomial coefficient that denominator has a degree of at least \(1\). In this step-by-step guide, you learn how to reduce rational expressions to the lowest terms.
Rational expressions are fractions that have a polynomial in the numerator, denominator, or both. Although rational expressions can seem complex because they contain variables, they can be simplified by using techniques
Related Topics
- How to Add and Subtract Rational Expressions
- How to Multiply Rational Expressions
- How to Graph Rational Functions
A step-by-step guide to reducing rational expressions to the lowest terms
To simplify any rational expression, follow these steps:
- Factor both the numerator and denominator of the rational expression. Remember to write each expression in standard form.
- List restricted values.
- Reduce the expression by canceling out common factors in the numerator and denominator.
- Rewrite the remaining factors in the numerator and denominator. Note any restricted values not implied by the expression.
Reducing Rational Expressions to the Lowest Terms – Example 1:
Reduce this rational expression to the lowest terms. \(\frac {x^2-3x+2}{x^2-1}\)
First, factor the numerator and denominator of rational expression:
\(\frac {x^2-3x+2}{x^2-1}\)\(=\frac{(x-2)(x-1)}{(x-1)(x+1)}\)
Since division by \(0\) is undefined, here we see that \(x≠1\) and \(x≠-1\).
Then, cancel common factors:
\(=\frac{(x-2)(x-1)}{(x-1)(x+1)}\) \(=\frac{(x-2)}{(x+1)}\)
Now, write the final answer:
\(\frac {(x-2)}{(x+1)}\) for \(x≠1\)
The original expression requires \(x≠±1\). We do not need to pay attention to \(x ≠-1\) because this is understood from the expression.
Reducing Rational Expressions to the Lowest Terms – Example 2:
Reduce this rational expression to the lowest terms. \(\frac{(x^2-4)}{(x^2-2x-8)}\)
First, factor the numerator and denominator of rational expression:
\(\frac{(x^2-4)}{(x^2-2x-8)}\) \(=\frac{(x-2)(x+2)}{(x+2)(x-4)}\)
Since division by \(0\) is undefined, here we see that \(x≠-2\) and \(x≠4\).
Then, cancel common factors:
\(=\frac{(x-2)(x+2)}{(x+2)(x-4)}\) \(=\frac{(x-2)}{(x-4)}\)
Now, write the final answer:
\(\frac{(x-2)}{(x-4)}\) for \(x≠-2\)
The original expression requires \(x≠-2\) and \(x≠4\). We do not need to pay attention to \(x ≠4\) because this is understood from the expression.
Exercises for Reducing Rational Expressions to the Lowest Terms
Reduce rational expressions to the lowest terms.
- \(\color{blue}{\frac{x^2-2x-15}{x^2+x-6}}\)
- \(\color{blue}{\frac{3x^2-3x}{3x^3-6x^2+3x}}\)
- \(\color{blue}{\frac{x^2+7x+12}{x^2-6x-27}}\)
- \(\color{blue}{\frac{6x^2-19x+3}{4x^2-36}}\)
- \(\color{blue}{\frac{x^2+2x-8}{x^2+6x-16}}\)
- \(\color{blue}{\frac{x-5}{x-2}}\), \(\color{blue}{x≠ -3}\)
- \(\color{blue}{\frac{1}{x-1}}\), \(\color{blue}{x≠0}\)
- \(\color{blue}{\frac{x+4}{x-9}}\),\(\color{blue}{x≠-3}\)
- \(\color{blue}{\frac{6x-1}{4(x+3)}}\), \(\color{blue}{x≠3}\)
- \(\color{blue}{\frac{x+4}{x+8}}\), \(\color{blue}{x≠2}\)
Related to This Article
More math articles
- Is the CBEST Math Difficult?
- FREE 7th Grade MAP Math Practice Test
- Convert Between Improper Fractions and Mixed Numbers
- How to Divide Polynomials Using Synthetic Division?
- TABE Math Formulas
- 10 Most Common 6th Grade ACT Aspire Math Questions
- 6 Reasons Why Doing Math Homework Is Important
- How to Graph Absolute Value Inequalities?
- How to Transform Linear Functions
- How to Complete the Table of Division Two-Digit Numbers By One-digit Numbers
What people say about "How to Reduce Rational Expressions to the Lowest Terms? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.