How to Find the Focus, Vertex, and Directrix of a Parabola?
You can easily find the focus, vertex, and directrix from the standard form of a parabola.
[include_netrun_products_block from-products="product/tsi-math-exercise-book-a-comprehensive-workbook/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
“A parabola consists of three parts: the vertex, focus, and directrix. The vertex represents the point where the curve reaches its maximum or minimum value, while the focus is a fixed point located inside the parabola. The directrix lies outside the curve and runs parallel to its axis. If these geometric concepts seem tricky at first, you can solve math at Edubrain to get step-by-step guidance and interactive explanations that make the process of learning much easier.
Related Topic
Step-by-Step Guide to Finding the Focus, Vertex, and Directrix of a Parabola
- For a Parabola in the form \(y=ax^2+bx+c\):
Vertex: \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})\), Focus: \((\frac{-b}{2a}, \frac{4ac-b^2+1}{4a})\), Direcrix: \(y=c-(b^2+1)4a\).
Finding the Focus, Vertex, and Directrix of a parabola – Example 1:
Find the vertex and focus of this parabola: \(y=3x^2+6x\)
Solution:
The Parabola given parameters are: \(a=3, b=6, c=0\)
Substitute the values in vertex formula: \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-6}{2(3)}, \frac{4(3)(0)-6^2}{4(3)})\)
Therefore, the vertex of the parabola is \((-1, 3)\).
To find the focus of the parabola, substitute the values in the focus formula: \((\frac{-b}{2a}, \frac{4ac-b^2+1}{4a})=(\frac{-6}{2(3)}, \frac{4(3)(0)-6^2+1}{4(3)})\)
Focus of parabola is \((-1, \frac{-35}{12})\).
Exercises for Finding the Focus, Vertex, and Directrix of Parabola
Find the vertex and focus of each parabola.
- \(\color{blue}{(y-2)^2=3(x-5)^2}\)
- \(\color{blue}{y=4x^2+x-1}\)
- \(\color{blue}{y=x^2+2x+3}\)
- \(\color{blue}{x=y^2-4y}\)
- \(\color{blue}{Vertex: (5, 2),}\) \(\color{blue}{focus: (5, \frac{25}{12})}\)
- \(\color{blue}{Vertex: (\frac{-1}{8}, \frac{-17}{16}), focus: (\frac{-1}{8}, -1)}\)
- \(\color{blue}{Vertex: (-1, 2), focus: (-1, \frac{9}{4})}\)
- \(\color{blue}{Vertex: (-4, 2), focus: (\frac{-15}{4}, 2)}\)
Related to This Article
More math articles
- 5th Grade STAAR Math FREE Sample Practice Questions
- FREE HiSET Math Practice Test
- 3rd Grade PEAKS Math Worksheets: FREE & Printable
- The Ultimate CLEP College Mathematics Course (+FREE Worksheets & Tests)
- Full-Length CLEP College Mathematics Practice Test
- 7th Grade NYSE Math Practice Test Questions
- 5th Grade STAAR Math Practice Test Questions
- How to Graph Translations on the Coordinate Plane?
- The Quotient Rule: Not Just Dividing Derivatives But Simple Enough
- Top 10 Tips for Managing Time Effectively on the ACT Math






What people say about "How to Find the Focus, Vertex, and Directrix of a Parabola? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.