Fundamental Trigonometric Identities
Trigonometric identities are equations that relate various trigonometric functions and are true for any variable value in the domain. In this post, you can learn fundamental trigonometric identities.
A step-by-step guide to fundamental trigonometric identities
The basic trigonometric identities or fundamental trigonometric identities are those trigonometric functions that are true every time for the variables.
The following equations are eight of the most basic and important trigonometric identities. These equations are true for any angle. Countless additional identities can be formed from them. These eight things should be kept in mind.
- \(\color{blue}{cot\left(θ\right)=\frac{cos\:\left(\theta \right)}{sin\:\left(\theta \right)}}\)
- \(\color{blue}{tan\:\left(\theta \right)=\frac{sin\:\left(\theta \right)}{cos\:\left(\theta \right)}}\)
- \(\color{blue}{cot\left(θ\right)=\frac{1}{tan\:\left(\theta \right)}}\)
- \(\color{blue}{sec\left(θ\right)=\frac{1}{cos\:\left(\theta \right)}}\)
- \(\color{blue}{csc\left(θ\right)=\frac{1}{sin\:\left(\theta \right)}}\)
- \(\color{blue}{\left(sin\left(θ\right)\right)^2+\left(cos\left(θ\right)\right)^2=1}\)
- \(\color{blue}{1+\left(tan\left(θ\right)\right)^2=\left(sec\left(θ\right)\right)^2\:\:}\)
- \(\color{blue}{1+\left(cot\left(θ\right)\right)^2=\left(csc\left(θ\right)\right)^2}\)
Related to This Article
More math articles
- The Ultimate ACCUPLACER Math Formula Cheat Sheet
- How to Remove Ambiguity in Infinite Limits
- The Role Played by Infinity in Limits
- 10 Most Common 5th Grade FSA Math Questions
- 3rd Grade MAP Math FREE Sample Practice Questions
- The Law of Sines
- Complete Guide to Inverse Trigonometric Ratios
- PSAT 8/9 Math Worksheets: FREE & Printable
- How to Write Linear Equations from Graphs
- Battle of the Decimals: Using Grids for Easy Comparisons





























What people say about "Fundamental Trigonometric Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.