Fundamental Trigonometric Identities
Trigonometric identities are equations that relate various trigonometric functions and are true for any variable value in the domain. In this post, you can learn fundamental trigonometric identities.

A step-by-step guide to fundamental trigonometric identities
The basic trigonometric identities or fundamental trigonometric identities are those trigonometric functions that are true every time for the variables.
The following equations are eight of the most basic and important trigonometric identities. These equations are true for any angle. Countless additional identities can be formed from them. These eight things should be kept in mind.
- \(\color{blue}{cot\left(θ\right)=\frac{cos\:\left(\theta \right)}{sin\:\left(\theta \right)}}\)
- \(\color{blue}{tan\:\left(\theta \right)=\frac{sin\:\left(\theta \right)}{cos\:\left(\theta \right)}}\)
- \(\color{blue}{cot\left(θ\right)=\frac{1}{tan\:\left(\theta \right)}}\)
- \(\color{blue}{sec\left(θ\right)=\frac{1}{cos\:\left(\theta \right)}}\)
- \(\color{blue}{csc\left(θ\right)=\frac{1}{sin\:\left(\theta \right)}}\)
- \(\color{blue}{\left(sin\left(θ\right)\right)^2+\left(cos\left(θ\right)\right)^2=1}\)
- \(\color{blue}{1+\left(tan\left(θ\right)\right)^2=\left(sec\left(θ\right)\right)^2\:\:}\)
- \(\color{blue}{1+\left(cot\left(θ\right)\right)^2=\left(csc\left(θ\right)\right)^2}\)
Related to This Article
More math articles
- Even or Odd Numbers
- Getting a Math Degree: Hacks to Make Your Life Easier
- FREE 3rd Grade STAAR Math Practice Test
- How to Find the Integral of Radicals
- How to Unravel the Essential Properties of Rectangles
- Top 10 Math Books for Grade 6 Students: Inspiring Masterminds
- How to Solve Scientific Notation? (+FREE Worksheet!)
- How to Change Base Formula for Logarithms?
- What Kind of Math Is on the HSPT Test?
- The Ultimate 7th Grade Scantron Math Course (+FREE Worksheets)
What people say about "Fundamental Trigonometric Identities - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.