Rationalizing Radical Expressions – Example 2: Rationalizing Radical Expressions – Example 3: Rationalizing Radical Expressions – Example 4: Exercises for Rationalizing Radical Expressions \(\color{blue}{\frac{15}{\sqrt{5}-2}}\) \(\color{blue}{\frac{\sqrt{3}+\sqrt{6}}{6-\sqrt{5}}}\) \(\color{blue}{\frac{4+\sqrt{2}}{\sqrt{2}-\sqrt{7}}}\) \(\color{blue}{\frac{2+\sqrt{8}}{\sqrt{3}-\sqrt{2}}}\) \(\color{blue}{\frac{\sqrt{9c}}{\sqrt{c^5}}}\) \(\color{blue}{\frac{10}{7-\sqrt{6}}}\) \(\color{blue}{15(\sqrt{5}+2)}\) \(\color{blue}{\frac{(\sqrt{3}+\sqrt{6})(6+\sqrt{5})}{31}}\) \(\color{blue}{-\frac{4\sqrt{2}+4\sqrt{7}+2+\sqrt{14}}{5}}\) \(\color{blue}{2\sqrt{3}+2\sqrt{2}+2\sqrt{6}+4}\) \(\color{blue}{\frac{3}{c^2}}\) \(\color{blue}{\frac{10(7+\sqrt{6})}{43}}\)
Rational Equations – Example 2: Rational Equations – Example 3: Rational Equations – Example 4: Exercises for Rational Equations Solve Rational Equations. \(\color{blue}{\frac{10}{x+4}=\frac{15}{4x+4}}\) \(\color{blue}{\frac{x+4}{x+1}=\frac{x-6}{x-1}}\) \(\color{blue}{\frac{2x}{x+3}=\frac{x-6}{x+4}}\) \(\color{blue}{\frac{1}{x+5}-1=\frac{1}{1+x}}\) \(\color{blue}{\frac{1}{5x^2}-\frac{1}{x}=\frac{2}{x}}\) \(\color{blue}{\frac{2x}{2x-2}-\frac{2}{x}=\frac{1}{x-1}}\) \(\color{blue}{x=\frac{4}{5}}\) \(\color{blue}{x=-\frac{1}{4}}\) \(\color{blue}{x=-9}\) or \(\color{blue}{x=-2}\) \(\color{blue}{x=-3}\) \(\color{blue}{x=\frac{1}{15}}\) \(\color{blue}{x=2}\)
Effortless Math services are waiting for you. login faster!
Password will be generated automatically and sent to your email.
After registration you can change your password if you want.