# How to Write the Equation of a Cosine Graph?

The equation of a cosine graph is based on the mathematical function \(cos(x)\), where \(x\) is the angle in radians.

The equation of a cosine graph with amplitude \(A\), period \(T\), phase shift (horizontal shift) of \(d\), and vertical shift of \(k\) is given by:

\(y = A × cos(2 × pi × \frac{(x – d)}{T}) + k\)

Where \(x\) is the independent variable (usually time or angle), \(y\) is the dependent variable (the value of the function), \(A\) is the amplitude (the maximum value of the function), \(T\) is the period (the distance between consecutive maximum or minimum values), \(d\) is the phase shift (the horizontal shift of the graph), and \(k\) is the vertical shift (the amount the graph is shifted up or down).

## Related Topics

- How to Graph the Sine Function
- How to Graph the Cosine Function
- How to Write the Equation of a Sine Graph
- How to Graph Inverse of the Sine Function
- How to Graph Inverse of the Cosine Function

## A step-by-step to write the equation of a cosine graph

To find out how to write the equation of a cosine graph, follow the step-by-step guide below:

The equation of a cosine graph is based on the mathematical function \(cos(x)\), where \(x\) is the angle in radians. However, in the equation of a cosine graph, we often use \(x\) as the independent variable, which could represent time, distance, or any other variable.

The amplitude \((A)\) of the cosine graph is the maximum value of the function, it tells us how high or low the graph oscillates.

The period \((T)\) is the distance between consecutive maximum or minimum values. In other words, it tells us how many units of the independent variable \((x)\) it takes for the graph to repeat its pattern.

The phase shift \((d)\) is a horizontal shift of the graph. It tells us how much the graph has been shifted to the right or left along the \(x\)-axis.

The vertical shift \((k)\) is the amount the graph is shifted up or down along the \(y\)-axis.

For example, if we have a cosine graph with amplitude of \(2\), period of \(4\), phase shift of \(1\), and vertical shift of \(3\), the equation would be:

\(y = 2 × cos(2 × pi × \frac{(x – 1)}{4}) + 3\)

This equation would represent a cosine graph that oscillates between \(1\) and \(5 (2+3)\) , completes one full oscillation every \(4\) units of \(x\) and has been shifted \(1\) unit to the right along the \(x\)-axis.

## Related to This Article

### More math articles

- How to Prepare for Math Exams: Study Tips & Tricks
- Deciphering the Dots: How to Recognizing and Understanding Graph Patterns
- Word Problems Involving Equivalent Ratio
- How to Determine if (X, Y) is a Solution to a System of Equations
- How to Find the Measures of Central Tendency? (+FREE Worksheet!)
- How to Find the Integral of Radicals
- Best Calculators for CA Exams
- Top 10 8th Grade OST Math Practice Questions
- The Ultimate 6th Grade PARCC Math Course (+FREE Worksheets)
- Absolute Value Definition

## What people say about "How to Write the Equation of a Cosine Graph? - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.