The Quotient Rule: Not Just Dividing Derivatives But Simple Enough
The quotient rule for derivatives allows calculation of the derivative of a function divided by another. It is essential because the derivative of a quotient of two functions isn't simply the quotient of their derivatives, necessitating a distinct formula for accurate differentiation in various applications.
Definition:
To use quotient rule, you subtract the product of the bottom function and the derivative of the top from the product of the top and the derivative of the bottom, then divide it all by the bottom function squared. Here is the mathematical formula for the quotient rule:
\( \left(\frac{f}{g}\right)’ = \frac{f’g – fg’}{g^2} \)
Example 1:
Let’s solve an example.
\( f(x) = \sin x, \ g(x) = x^2 + 1\)
\( f'(x) = \cos x, \ g'(x) = 2x \)
\(\Rightarrow \left(\frac{\sin x}{x^2 + 1}\right)’ = \frac{\cos x \cdot (x^2 + 1) – \sin x \cdot 2x}{(x^2 + 1)^2} \)
\( = \frac{\cos x \cdot x^2 + \cos x – 2x \sin x}{(x^2 + 1)^2} \)
Example 2:
\( f(x) = x^3, \ g(x) = \cos x \)
\(f'(x) = 3x^2, \ g'(x) = -\sin x \)
\(\Rightarrow \left(\frac{x^3}{\cos x}\right)’ = \frac{3x^2 \cdot \cos x – x^3 \cdot (-\sin x)}{\cos^2 x} \)
\( = \frac{3x^2 \cos x + x^3 \sin x}{\cos^2 x} \)
Hints:
- In some complex fractions, applying logarithmic differentiation simplifies the process more than the quotient rule would.
- For \( \frac{1}{x} \) and \( \frac{1}{f(x)} \) , we use the following formulas, although \( \frac{1}{x} \) could be solved using power rule too.
\( \left(\frac{1}{x}\right)’ = -\frac{1}{x^2} \)
\( \left(\frac{1}{f(x)}\right)’ = -\frac{f'(x)}{[f(x)]^2} \)
Related to This Article
More math articles
- 4th Grade SC Ready Math Worksheets: FREE & Printable
- How to Find the Volume of Cones and Pyramids? (+FREE Worksheet!)
- 5th Grade KAP Math Worksheets: FREE & Printable
- 10 Most Common 7th Grade SBAC Math Questions
- How to Expand Sigma Notation?
- The Ultimate 7th Grade NHSAS Math Course (+FREE Worksheets)
- How to Find the Focus, Vertex, and Directrix of a Parabola?
- Word Problems: Fractions
- How to Use the Graphs of System of Equations for Classification
- Best Calculator for Calculus 2023
What people say about "The Quotient Rule: Not Just Dividing Derivatives But Simple Enough - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.