The Quotient Rule: Not Just Dividing Derivatives But Simple Enough
The quotient rule for derivatives allows calculation of the derivative of a function divided by another. It is essential because the derivative of a quotient of two functions isn't simply the quotient of their derivatives, necessitating a distinct formula for accurate differentiation in various applications.

Definition:
To use quotient rule, you subtract the product of the bottom function and the derivative of the top from the product of the top and the derivative of the bottom, then divide it all by the bottom function squared. Here is the mathematical formula for the quotient rule:
\( \left(\frac{f}{g}\right)’ = \frac{f’g – fg’}{g^2} \)
Example 1:
Let’s solve an example.
\( f(x) = \sin x, \ g(x) = x^2 + 1\)
\( f'(x) = \cos x, \ g'(x) = 2x \)
\(\Rightarrow \left(\frac{\sin x}{x^2 + 1}\right)’ = \frac{\cos x \cdot (x^2 + 1) – \sin x \cdot 2x}{(x^2 + 1)^2} \)
\( = \frac{\cos x \cdot x^2 + \cos x – 2x \sin x}{(x^2 + 1)^2} \)
Example 2:
\( f(x) = x^3, \ g(x) = \cos x \)
\(f'(x) = 3x^2, \ g'(x) = -\sin x \)
\(\Rightarrow \left(\frac{x^3}{\cos x}\right)’ = \frac{3x^2 \cdot \cos x – x^3 \cdot (-\sin x)}{\cos^2 x} \)
\( = \frac{3x^2 \cos x + x^3 \sin x}{\cos^2 x} \)
Hints:
- In some complex fractions, applying logarithmic differentiation simplifies the process more than the quotient rule would.
- For \( \frac{1}{x} \) and \( \frac{1}{f(x)} \) , we use the following formulas, although \( \frac{1}{x} \) could be solved using power rule too.
\( \left(\frac{1}{x}\right)’ = -\frac{1}{x^2} \)
\( \left(\frac{1}{f(x)}\right)’ = -\frac{f'(x)}{[f(x)]^2} \)
Related to This Article
More math articles
- 3rd Grade OST Math FREE Sample Practice Questions
- Overview of the TExES Core Subjects Mathematics Test
- The Ultimate Geometry Course
- How to Prepare for the SHSAT Math Test?
- How to Find Volume by Spinning: Washer Method
- What Happens If You Fail the STAAR Test in High School?
- How to Piece Together Areas: Compound Figures with Triangles, Semicircles, and Quarter Circles
- 5th Grade IAR Math Practice Test Questions
- How to Master Work Problems: A Comprehensive Step-by-Step Guide
- Top 10 8th Grade PARCC Math Practice Questions
What people say about "The Quotient Rule: Not Just Dividing Derivatives But Simple Enough - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.