How to Solve Rational Equations? (+FREE Worksheet!)
An equation that consists of at least one Rational expression is a Rational equation, and in this article, we will teach you how to solve this type of equation using two methods.
Related Topics
- How to Add and Subtract Rational Expressions
- How to Multiply Rational Expressions
- How to Divide Rational Expressions
- How to Simplify Complex Fractions
- How to Graph Rational Expressions
A step-by-step guide to solving Rational Equations
For solving rational equations, we can use following methods:
- Converting to a common denominator: In this method, you need to get a common denominator for both sides of the equation. Then, make numerators equal and solve for the variable.
- Cross-multiplying: This method is useful when there is only one fraction on each side of the equation. Simply multiply the first numerator by the second denominator and make the result equal to the product of the second numerator and the first denominator.
Examples
Rational Equations – Example 1:
Solve. \(\frac{x – 2}{x + 1 }=\frac{x + 4}{x – 2}\)
Solution:
Use cross multiply method: if \(\frac{a}{b}=\frac{c}{d}\), then: \(a×d=b×c \)
\(\frac{x – 2}{x + 1 }=\frac{x + 4}{x – 2}→(x-2)(x-2)=(x+4)(x+1)\)
Expand: \((x-2)^2=x^2-4x+4\) and \((x+4)(x+1)=x^2+5x+4\), Then:
\( x^2-4x+4=x^2+5x+4\), Now, simplify: \(x^2-4x=x^2+5x\), subtract both sides \((x^2+5x)\), Then: \(x^2-4x-(x^2+5x)=x^2+5x-(x^2+5x)→ -9x=0→x=0\)
Rational Equations – Example 2:
Solve. \(\frac{x – 3}{x + 1 }=\frac{x + 5}{x – 2}\)
Solution:
Use cross multiply method: if \(\frac{a}{b}=\frac{c}{d}\), then: \(a×d=b×c\)
Then: \((x-3)(x-2)=(x+5)(x+1)\)
Expand: \((x – 3)(x-2)=x^2-5x+6\)
Expand: \((x+5)(x+1)=x^2+6x+5\), Then: \(x^2-5x+6=x^2+6x+5\), Simplify: \(x^2-5x=x^2+6x-1\)
Subtract both sides \(x^2+6x ,Then: -11x=-1→x=\frac{1}{11}\)
Rational Equations – Example 3:
Solve. \(\frac{x +3}{x + 6 }=\frac{x + 2}{x – 4}\)
Solution:
Use cross multiply method: if \(\frac{a}{b}=\frac{c}{d}\), then: \(a×d=b×c \)
\(\frac{x+3}{x +6 }=\frac{x + 2}{x – 4}→(x+3)(x-4)=(x+2)(x+6)\)
Expand: \((x + 3)(x-4)=x^2-x-12\)
Expand: \((x+2)(x+6)=x^2+8x+12\), Then: \(x^2-x-12=x^2+8x+12\), Simplify: \(x^2-x=x^2+8x+24\)
Subtract both sides \(x^2+8x ,Then: -9x=24→x=-\frac{24}{9}=-\frac{8}{3}\)
Rational Equations – Example 4:
Solve. \(\frac{x +5}{x + 2 }=\frac{x -5}{x +3}\)
Solution:
Use cross multiply method: if \(\frac{a}{b}=\frac{c}{d}\), then: \(a×d=b×c \)
\(\frac{x+5}{x +2 }=\frac{x -5}{x+3}→(x+5)(x+3)=(x-5)(x+2)\)
Expand: \((x + 5)(x+3)=x^2+8x+15\)
Expand: \((x-5)(x+2)=x^2-3x-10\), Then: \(x^2+8x+15=x^2-3x-10\), Simplify: \(x^2+8x=x^2-3x-25\)
Subtract both sides \(x^2-3x ,Then: 11x=-25→x=-\frac{25}{11}\)
Exercises for Rational Equations
Solve Rational Equations.
- \(\color{blue}{\frac{10}{x+4}=\frac{15}{4x+4}}\)
- \(\color{blue}{\frac{x+4}{x+1}=\frac{x-6}{x-1}}\)
- \(\color{blue}{\frac{2x}{x+3}=\frac{x-6}{x+4}}\)
- \(\color{blue}{\frac{1}{x+5}-1=\frac{1}{1+x}}\)
- \(\color{blue}{\frac{1}{5x^2}-\frac{1}{x}=\frac{2}{x}}\)
- \(\color{blue}{\frac{2x}{2x-2}-\frac{2}{x}=\frac{1}{x-1}}\)

- \(\color{blue}{x=\frac{4}{5}}\)
- \(\color{blue}{x=-\frac{1}{4}}\)
- \(\color{blue}{x=-9}\) or \(\color{blue}{x=-2}\)
- \(\color{blue}{x=-3}\)
- \(\color{blue}{x=\frac{1}{15}}\)
- \(\color{blue}{x=2}\)
The Absolute Best Book for the Algebra Test
Related to This Article
More math articles
- 6th Grade STAAR Math FREE Sample Practice Questions
- How to Change Base Formula for Logarithms?
- How to Compare Money Amounts
- Top 10 Free Websites for HSPT Math Preparation
- Equivalent Rates
- How to Find Addition and Subtraction of Vectors?
- Completing the Puzzle: How to Finishing Equations when Multiplying Fractions by Whole Numbers Using Models
- TExES Core Subjects Math Worksheets: FREE & Printable
- 10 Most Common 5th Grade NYSE Math Questions
- Overview of Upper-Level SSAT Mathematics Test



















What people say about "How to Solve Rational Equations? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.