OAR Math Formulas
Rounding
Whole Number
Estimates
Decimals
Mixed Numbers
Factoring Numbers
Divisibility Rules
Greatest Common Factor
Least Common Multiple
Integers
Real Numbers
Order of Operations
Absolute Value
Ratios
Percentages
Proportional Ratios
Percent of Change
Markup
Discount
Expressions and Variables
Tax
Distributive Property
Polynomial
Systems of Equations
Equations
Functions
Inequalities
Solving Systems of Equations by Elimination
Lines (Linear Functions)
Distance from A to B:
Parallel and Perpendicular lines:
Mid-point of the segment AB:
Slope of the line:
Point-slope form:
Intersecting lines:
Slope-intercept form:
Transversal: Parallel lines:
Parabolas:
Factoring:
Exponents:
Scientific Notation:
Square:
Square Roots:
Pythagorean Theorem:
Triangles
Right triangles:
All triangles:
Area \(=\frac{1}{2}\) b. h
Angles on the inside of any triangle add up to \(180^\circ\).
The length of one side of any triangle is always less than the sum and more than the difference between the lengths of the other two sides.
An exterior angle of any triangle is equal to the sum of the two remote interior angles. Other important triangles:
Equilateral:
These triangles have three equal sides, and all three angles are \(60^\circ\).
Isosceles:
An isosceles triangle has two equal sides. The “base” angles (the ones opposite the two sides) are equal (see the \(45^\circ\) triangle above).
Similar:
Two or more triangles are similar if they have the same shape. The corresponding angles are equal, and the corresponding sides are in proportion. For example, the \(3-4-5\) triangle and the \(6-8-10\) triangle from before are similar since their sides are in a ratio of to.
Circles
Area \(=πr^2\)
Circumference \(=2πr\)
Full circle \(=360^\circ\)
Length Of Arc \(=(n^\circ/360^\circ).2πr\)
Area Of Sector \(=(n^\circ/360^\circ).πr^2\)
Equation of the circle (above left figure): \((x-h)^2+(y-k)^2=r^2\).
Rectangles
(Square if l=w)
Area=lw
Parallelogram
(Rhombus if l=w)
Area=lh
Regular polygons are n-sided figures with all sides equal and all angles equal.
The sum of the inside angles of an n-sided regular polygon is
\((n-2).180^\circ\).
Area of a parallelogram:
\(A = bh\)
Area of a trapezoid:
\(A =\frac{1}{2} h (b_{1}+b_{2})\)
Surface Area and Volume of a Rectangular/right prism:
\(SA=ph+2B\)
\(V=Bh\)
Surface Area and Volume of a Cylinder:
\(SA =2πrh+2πr^2\)
\(V =πr^2 h \)
Surface Area and Volume of a Pyramid
\(SA=\frac{1}{2} \ ps+b\)
\(V=\frac{1}{3}\ bh\)
Surface Area and Volume of a Cone
\(SA =πrs+πr^2\)
\(V=\frac{1}{3} \ πr^2 \ h\)
Surface Area and Volume of a Sphere
\(SA =4πr^2\)
\(V =\frac{4}{3} \ πr^3\)
(p \(=\) perimeter of base B; \(π ~ 3.14 \))
Solids
Rectangular Solid
Volume =lwh
Area =2(lw+wh+lh)
Right Cylinder
Volume \(=πr^2 \ h\)
Area \(=2πr(r+h)\)
Quadratic formula:
\( x=\frac{-b±\sqrt{b^2-4ac}}{2a}\)
Simple interest:
\(I=prt\)
(I = interest, p = principal, r = rate, t = time)
mean:
mean: \(\frac{sum \ of \ the \ data}{of \ data \ entires}\)
mode:
value in the list that appears most often
range:
largest value \(-\) smallest value
Median
The middle value in the list (which must be sorted)
Example: median of
\( \{3,10,9,27,50\} = 10\)
Example: median of
\( \{3,9,10,27\}=\frac{(9+10)}{2}=9.5 \)
Sum
average \(×\) (number of terms)
Average
\( \frac{sum \ of \ terms}{number \ of \ terms}\)
Average speed
\(\frac{total \ distance}{total \ time}\)
Probability
\(\frac{number \ of \ desired \ outcomes}{number \ of \ total \ outcomes}\)
The probability of two different events, A and,B both happening is:
P(A and B)=p(A).p(B)
as long as the events are independent (not mutually exclusive).
Powers, Exponents, Roots
\(x^a.x^b=x^{a+b}\)
\(\frac{x^a}{x^b} = x^{a-b}\)
\(\frac{1}{x^b }= x^{-b}\)
\((x^a)^b=x^{a.b}\)
\((xy)^a= x^a.y^a\)
\(x^0=1\)
\(\sqrt{xy}=\sqrt{x}.\sqrt{y}\)
\((-1)^n=-1\), if n is odd.
\((-1)^n=+1\), if n is even.
If \(0<x<1\), then
\(0<x^3<x^2<x<\sqrt{x}<\sqrt{3x}<1\).
Interest
Simple Interest
The charge for borrowing money or the return for lending it.
Interest = principal \(×\) rate \(×\) time
OR
\(I=prt\)
Compound Interest
Interest is computed on the accumulated unpaid interest as well as on the original principal.
A \(=P(1+r)^t\)
An amount at ethe nd of the time
P principal (starting amount)
r interest rate (change to a decimal i.e., \(50\%=0.50\))
t= number of years invested
Powers/ Exponents
Positive Exponents
An exponent is simply shorthand for multiplying that number of identical factors. So \(4^3\) is the same as (4)(4)(4), three identical factors of 4. And \(x^3\) is just three factors of x, \((x)(x)(x)\).
Negative Exponents
A negative exponent means to divide by that number of factors instead of multiplying.
So \(4^{-3}\) is the same as \( \frac{1}{4^3}\) and
\(x^{-3}=\frac{1}{x^3}\)
Factorials
Factorial- the product of a number and all counting numbers below it.
8 factorial \(=8!=\)
\(8×7×6×5×4×3×2×1=40,320\)
5 factorial \(=5!=\)
\(5×4×3×2×1=120\)
2 factorial \(=2!=2× 1=2\)
Multiplying Two Powers of the SAME Base
When the bases are the same, you find the new power by just adding the exponents
\(x^a.x^b=x^{a+b }\)
Powers of Powers
For the power of power: you multiply the exponents.
\((x^a)^b=x^{(ab)}\)
Dividing Powers
\(\frac{x^a}{x^b} =x^a x^{-b}= x^{a-b}\)
The Zero Exponent
Anything to the 0 power is 1.
\(x^0= 1\)
Permutation:
When different orderings of the same items are counted separately, we have a permutation problem:
\(_{n}p_{r}=\frac{n!}{(n-1)!}\)
Combination:
The fundamental counting principle, as demonstrated above, is used any time the order of the outcomes is important. When selecting objects from a group where the order is NOT important, we use the formula for COMBINATIONS:
The fundamental counting principle, as demonstrated above, is used any time the order of the outcomes is important. When selecting objects from a group where the order is NOT important, we use the formula for COMBINATIONS:
\(_{n}C_{r}=\frac{n!}{r!(n-1)!}\)
The Best Book to Ace the OAR Test
More from Effortless Math for OAR Test …
Do you think you still need more practice to pass the OAR math test?
So do not forget to review the top questions of the test!: Top 10 OAR Math Practice Questions
Do you want to get the best result in the OAR math test?
Use our free and printable worksheets to achieve your goal: OAR Math Worksheets: FREE & Printable
Would you like to know how OAR math scores are interpreted?
How the OAR Test is Scored will answer your question!
The Perfect Prep Books for the OAR Math Test
Have any questions about the OAR Test?
Write your questions about the OAR or any other topics below and we’ll reply!
Related to This Article
More math articles
- 3rd Grade STAAR Math FREE Sample Practice Questions
- ATI TEAS 7 Math FREE Sample Practice Questions
- 4th Grade OST Math FREE Sample Practice Questions
- 4th Grade FSA Math FREE Sample Practice Questions
- The Ultimate 6th Grade FSA Math Course (+FREE Worksheets)
- Fraction Wizardry: How to Multiply Fractions and Whole Numbers
- 5 Best AFOQT Math Study Guides
- Understanding and Mastering Perpendicular Lines and How to Draw Them
- 10 Most Common 3rd Grade PSSA Math Questions
- 3rd Grade Wisconsin Forward Math Worksheets: FREE & Printable

















What people say about "OAR Math Formulas - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.