How to Solve Rational Exponents and Radicals?
By identifying powers and roots and converting them to radicals, we can write rational power exponents expressions as radicals. In this post, you learn more about rational exponents and radicals.

An expression with a rational exponent is equivalent to a radical in which the denominator is the index and the numerator is the exponent. Any radical expression can be written with a rational exponent, which we call exponential form.
Related Topics
A step-by-step guide to rational exponents and radicals
By identifying powers and roots and converting them to radicals, we can write rational power exponents expressions as radicals. Consider the rational exponents’ expression \(a^{\frac{m}{n}}\). Now, follow the steps given:
- Identify power by looking at the numerator of the rational exponent. Here in the rational exponent \(a^{\frac{m}{n}}\), \(m\) is the power.
- Identify the root by looking at the denominator of the rational exponent. Here in rational exponent \(a^{\frac{m}{n}}\), \(n\) is the root.
- Write the base as the radicand, power raising to the radicand, and the root as the index. Here we can write \(a^{\frac{m}{n}}=\sqrt[n]{a^m}\).
We can also convert radicals into rational exponents. Consider the square root of the positive number \(\sqrt{a}\). We can write the square of \(\sqrt{a}\) as a rational exponent. \(\sqrt{a}=a^{\frac{1}{2}}\) which is a rational exponent.
Rational Exponents and Radicals – Example 1:
Express \((2x)^{\frac{1}{3}}\) in radical form.
Solution:
\((2x)^{\frac{1}{3}}\) \(=\)\(\sqrt[3]{2x}\)
Rational Exponents and Radicals – Example 2:
Write \(\sqrt[4]{81}\) as an expression with a rational exponent.
Solution:
\(\sqrt[4]{81}=81^{\frac{1}{4}}\)
Exercises for Rational Exponents and Radicals
Rewrite the expression in radical form or rational exponent.
- \(\color{blue}{6\sqrt[3]{xy}}\)
- \(\color{blue}{27^{\frac{2}{3}}}\)
- \(\color{blue}{\sqrt[2]{\left(5ab\right)^3}}\)
- \(\color{blue}{\left(10\:r\right)^{-\frac{3}{4}}}\)
- \(\color{blue}{\frac{1}{\sqrt[5]{\left(6x\right)^3}}}\)

- \(\color{blue}{6\left(xy\right)^{\frac{1}{3}}}\)
- \(\color{blue}{\sqrt[3]{27^2}}\)
- \(\color{blue}{\left(5ab\right)^{\frac{3}{2}}}\)
- \(\color{blue}{\frac{1}{\sqrt[4]{\left(10\:r\right)^3}}}\)
- \(\color{blue}{\left(6x\right)^{-\frac{3}{5}}}\)
Related to This Article
More math articles
- What is Rationalizing Infinite Limits: Useful Techniques to Simplify Limits
- 7th Grade Common Core Math Practice Test Questions
- Best Online Math Tutoring Equipment
- 7th Grade Georgia Milestones Assessment System Math FREE Sample Practice Questions
- Deciphering Chance: A Comprehensive Guide to Mutually Exclusive Events in Probability
- The Ultimate Middle School Math Course (+FREE Worksheets)
- Best Calculators for the PSAT 10 Math Test
- PSAT Cаlсulаtоr Pоliсу
- Intelligent Math Puzzle – Challenge 78
- Unraveling the Mysteries of Math: How to Solve Word Problems Involving Percent of Change
What people say about "How to Solve Rational Exponents and Radicals? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.