How to Find the Number of Solutions in a System of Equations?
Depending on how the linear equations in a system touch each other, there will be a different number of solutions to the system. Here you get familiarized with how to find the number of solutions in a system of equations.

A system of linear equations usually has a single solution, but sometimes it can have no solution (parallel lines) or infinite solutions (same line).
Related Topics
A step-by-step guide to the number of solutions in a system of equations
A linear equation in two variables is an equation of the form \(ax + by + c = 0\) where \(a, b, c ∈ R\), \(a\), and \(b ≠ 0\). When we consider the system of linear equations, we can find the number of answers by comparing the coefficients of the variables of the equations.
Three types of solutions of a system of linear equations
Consider the pair of linear equations in two variables \(x\) and \(y\):
\(a_1x+b_1y+c_1=0\)
\(a_2x+b_2y+c_2=0\)
Here \(a_1\), \(b_1\), \(c_1\), \(a_2\), \(b_2\), \(c_2\) are all real numbers.
Note that, \(a_1^2 + b_1^2 ≠ 0, a_2^2 + b_2^2 ≠ 0\).
- If \(\frac{a_1}{a_2}≠ \frac{b_1}{b_2}\), then there will be a unique solution. If we plot the graph, the lines will intersect. This type of equation is called a consistent pair of linear equations.
- If \(\frac{a_1}{a_2}= \frac{b_1}{b_2}=\frac{c_1}{c_2}\), then there will be infinitely many solutions. The lines will coincide. This type of equation is called a dependent pair of linear equations in two variables.
- If \(\frac{a_1}{a_2}= \frac{b_1}{b_2}≠\frac{c_1}{c_2}\), then there will be no solution. If we plot the graph, the lines will be parallel. This type of equation is called an inconsistent pair of linear equations.
The Number of Solutions in a System of Equations – Example 1:
How many solutions does the following system have?
\(y=-2x-4\), \(y=3x+3\)
Solution:
First, rewrite the equation to the general form:
\(-2x-y-4=0\)
\(3x-y+3=0\)
Now, compare the coefficients:
\(\frac{a_1}{a_2}\)\(=-\frac{2}{3}\)
\(\frac{b_1}{b_2}\)\(=-\frac{1}{1}=1\)
\(\frac{a_1}{a_2}≠ \frac{b_1}{b_2}\), Hence, this system of equations will have only one solution.
Exercises for the Number of Solutions in a System of Equations
Find the number of solutions in each system of equations.
- \(\color{blue}{2x\:+\:3y\:-\:11\:=\:0,\:3x\:+\:2y\:-\:9\:=\:0}\)
- \(\color{blue}{y=\frac{10}{3}x+\frac{9}{7},\:y=\frac{1}{8}x-\frac{3}{4}}\)
- \(\color{blue}{y=\frac{8}{5}x+2,\:y=\frac{8}{5}x+\frac{5}{2}}\)
- \(\color{blue}{y=-x+\frac{4}{7},\:y=-x+\frac{4}{7}}\)

- \(\color{blue}{one\:solution}\)
- \(\color{blue}{one\:solution}\)
- \(\color{blue}{no\:solution}\)
- \(\color{blue}{infinitely\:many\:solutions}\)
Related to This Article
More math articles
- 7th Grade FSA Math FREE Sample Practice Questions
- Top 10 Tips to Overcome TASC Math Anxiety
- How to Find Complementary and Supplementary Angles? (+FREE Worksheet!)
- How to Do Ratio, Proportion, and Percentages Puzzle -Critical Thinking 8
- How to Motivate your Child to Learn Math?
- The Ultimate ISEE Middle-Level Math Course (+FREE Worksheets & Tests)
- How to Identify Characteristics of Quadratic Functions: Equations
- Top 10 4th Grade Common Core Math Practice Questions
- The Ultimate SIFT Math Course (+FREE Worksheets & Tests)
- Unlocking Trigonometric Secrets: A Comprehensive Guide to Double-Angle and Half-Angle Formulas
What people say about "How to Find the Number of Solutions in a System of Equations? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.