How to Determine Limits Using the Squeeze Theorem?
If two functions squeeze together at a certain point, then any function trapped between them will get squeezed to that same point. The following step-by-step guide helps you determine limits using the Squeeze Theorem.

The squeeze theorem allows us to find the limit of a function at a particular point, even when the function is not defined at that point. The way we do this is by showing that our function can be squeezed between two other functions at a given point and proving that the limits of these other functions are equal.
Related Topics
- How to Define Limits Analytically Using Correct Notation
- How to Estimate Limit Values from the Graph
- How to Select Procedures for Determining Limits
- Properties of Limits
A step-by-step guide to determining limits using the squeeze theorem
The squeeze theorem:
We’ll assume our original function is \(h(x)\) and that it’s placed between two other functions, \(f(x)\) and \(g(x)\), so:
\(\color{blue}{f(x)≤h(x)≤g(x)}\)
It’s also a given that when we approach the point of our interest, the limitations of our other two functions are equal; therefore, this assumption is also made:
\(\color{blue}{lim_{x\to c}f(x)=lim_{x\to c}g(x)=L}\)
If we can show that both of the above statements are true, then we know that our original function has the same limit as the other two functions, and we say:
\(\color{blue}{lim_{x\to c}h(x)=L}\)
We don’t need to know what happens to \(h(x)\) at \(x=c\) since we don’t need to know. We only care about the limit, therefore all we need to know is what’s going on around \(x=c\).
Determining Limits Using the Squeeze Theorem – Example 1:
Suppose there are three functions that \(f(x)≤ g(x) ≤ h(x)\) when \(x\) is near \(2\). Further, suppose \(f(x)=-\frac{1}{3}x^3+x^2-\frac{7}{3}\) and \(h(x)=cos(\frac{\pi}{2}x)\). Find \(lim_{x\to 2}g(x)\).
First, find \(f(x)\):
\(lim_{x\to 2}f(x)=lim_{x\to 2}-\frac{1}{3}x^3+x^2-\frac{7}{3}\)
\(=lim_{x\to 2}-\frac{1}{3}(2)^3+(2)^2-\frac{7}{3}\)
\(=-\frac{8}{3}+4-\frac{7}{3}\)
\(=\frac{-8+4(3)-7}{3}=\frac{-8+12-7}{3}\)
\(=-\frac{3}{3}=-1\)
Then, find \(h(x)\):
\(lim_{x\to 2}h(x)=lim_{x\to 2}cos(\frac{\pi}{2}x)\)
\(=lim_{x\to 2}cos(\frac{\pi}{2}2)\)
\(=cos{\pi}\)
\(=-1\)
Since \(f(x)≤ g(x) ≤ h(x)\) and \(lim_{x\to 2}f(x)=lim_{x\to 2}h(x)=-1\), the Squeeze Theorem guarantees \(lim_{x\to 2}g(x)=-1\).
Exercises for Determining Limits Using the Squeeze Theorem
Calculate the value of the following limit.
- \(\color{blue}{lim_{x\to 0} x^2sin\frac{1}{x}}\)
- \(\color{blue}{lim _{x\to \infty }\left(\frac{3x+cos^2\left(3x+1\right)}{7-4x}\right)}\)
- \(\color{blue}{lim _{x\to \infty }\left(\frac{3-cosx}{x+6}\right)}\)
- \(\color{blue}{lim _{x\to 2}\left(x^2+x-6\right)cos\left(\frac{1}{x-2}\right)}\)

- \(\color{blue}{0}\)
- \(\color{blue}{-\frac{3}{4}}\)
- \(\color{blue}{0}\)
- \(\color{blue}{0}\)
Related to This Article
More math articles
- 7th Grade MCAS Math Practice Test Questions
- 5th Grade KAP Math Worksheets: FREE & Printable
- How to Organize Data?
- 5th Grade SC Ready Math Worksheets: FREE & Printable
- 5th Grade ISASP Math Worksheets: FREE & Printable
- 4th Grade FSA Math Worksheets: FREE & Printable
- Pattern Power: How to Unravel Division Trends Across Expanding Place Values
- 7th Grade NHSAS Math Worksheets: FREE & Printable
- Benchmark Brilliance: How to Estimate Decimal Sums and Differences with Ease
- How to Simplify Ratios? (+FREE Worksheet!)
What people say about "How to Determine Limits Using the Squeeze Theorem? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.