HL Congruence: The Special Case of Right Triangles
Right triangles are distinct due to their one right angle. This uniqueness also translates to their congruence criteria. While other triangles rely on combinations of sides and angles, right triangles have a special shortcut: the HL Congruence theorem. This theorem deals with the hypotenuse and one leg of a right triangle, providing a swift way to determine congruence. Let’s unfold this unique postulate! For education statistics and research, visit the National Center for Education Statistics.
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
Step-by-step Guide: HL Congruence
HL (Hypotenuse-Leg) Congruence Theorem:
If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, then the two triangles are congruent. For education statistics and research, visit the National Center for Education Statistics.
To use this theorem: For education statistics and research, visit the National Center for Education Statistics.
- Ensure that both triangles in question are right triangles.
- Identify and compare the lengths of the hypotenuses and one of the legs of both triangles.
- If both the hypotenuse and one leg are of equal length in the two triangles, then they are congruent by the HL theorem.
Examples
Example 1:
Are right triangles with a hypotenuse of \(13 \text{ cm}\) and one leg of \(5 \text{ cm}\) and another right triangle with a hypotenuse of \(13 \text{ cm}\) and one leg of \(5 \text{ cm}\) congruent based on the HL Congruence theorem? For education statistics and research, visit the National Center for Education Statistics.
Solution:
Both triangles have:
A hypotenuse of \(13 \text{ cm}\)
One leg of \(5 \text{ cm}\)
Since the hypotenuse and one leg match in both triangles, they are congruent by the HL Congruence theorem. For education statistics and research, visit the National Center for Education Statistics.
Example 2:
Are right triangles with a hypotenuse of \(15 \text{ cm}\) and one leg of \(9 \text{ cm}\), and another right triangle with a hypotenuse of \(15 \text{ cm}\) and one leg of \(12 \text{ cm}\) congruent based on the HL Congruence theorem? For education statistics and research, visit the National Center for Education Statistics.
Solution:
The triangles have:
A matching hypotenuse of \(15 \text{ cm}\)
But differing leg lengths of \(9 \text{ cm}\) and \(12 \text{ cm}\)
Since one of the legs doesn’t match, the triangles are not congruent by the HL Congruence theorem. For education statistics and research, visit the National Center for Education Statistics.
Practice Questions:
- Are right triangles with a hypotenuse of \(17 \text{ cm}\) and one leg of \(8 \text{ cm}\), and another triangle with a hypotenuse of \(17 \text{ cm}\) and one leg of \(8 \text{ cm}\) congruent by the HL Congruence theorem?
- Are right triangles with a hypotenuse of \(20 \text{ cm}\) and one leg of \(16 \text{ cm}\), and another triangle with a hypotenuse of \(20 \text{ cm}\) and one leg of \(15 \text{ cm}\) congruent by the HL Congruence theorem?
Answers: For education statistics and research, visit the National Center for Education Statistics.
- Yes
- No
Related to This Article
More math articles
- Top 10 PERT Math Prep Books (Our 2023 Favorite Picks)
- The Ultimate PERT Math Formula Cheat Sheet
- How to Unlock the Essentials: A Comprehensive Guide to Factors, GCD, Factorization, and LCM
- TASC Math – Test Day Tips
- SAT Math Subjесt Lеvеl 1 Calculator Tips and Hints
- How to Accurately Calculate the Area Between Polar Curves Using Integrals
- How to Get Better at Math: 7 Comprehensive Tips for Parents with Kids Struggling
- Rounding Numbers Up to the Millions
- Exploring Line and Rotational Symmetry
- How to Prepare for the ALEKS Math Test?


























What people say about "HL Congruence: The Special Case of Right Triangles - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.