How to Graph the Secant Function?
The secant function is the reciprocal of the trigonometric function cosine. In this guide, you will learn more about the graph of the secant function.

A step-by-step guide to graphing the secant function
The secant function is a periodic function in trigonometry. The secant function can be defined as the ratio of the length of the hypotenuse to the length of the base in a right triangle. It is the reciprocal of the \(cos\) function and, is also written as \(sec x = \frac{1}{cos x}\).
Graphing the secant becomes very easy because we already know the cosine graph, so we can easily derive the graph for \(sec x\) by finding the reciprocal of each \(cos\) value. When the value of \(cos x\) is very small, the value of \(sec x\) will be very large. That is, finding \(\frac{1}{y}\) for each value of \(y\) in the curve \(y= cos x\). The table below shows some angles in radians:

We also see that when the value of the \(cos\) function is zero, the secant function goes to infinity, which means that when the cosine value is \(0\), the secant is undefined. So we get the \(sec x\) graph below:

Related to This Article
More math articles
- FTCE Math FREE Sample Practice Questions
- The Best Calculators for Back to School 2023
- TSI Math-Test Day Tips
- Full-Length ALEKS Math Practice Test-Answers and Explanations
- Take GED Test Online for Free
- The Best Teacher Desks in 2024
- How to Graph a Horizontal or Vertical line?
- How to Decode the Mysteries: A Comprehensive Solution Guide for “FTCE Math for Beginners”
- Geometry Puzzle – Challenge 71
- How to Manage Your Time Effectively on the ISEE Math Test?
What people say about "How to Graph the Secant Function? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.