How to Graph the Cosecant Function?
The cosecant function is the reciprocal of the trigonometric function sine. In this guide, you will learn more about the graph of the cosecant function.
A step-by-step guide to graphing the cosecant function
The cosecant function is the reciprocal of the trigonometric function \(sin\). Since the cosecant function is the reciprocal of the \(sin\) function, we can write its formula as:
\(\color{blue}{csc (\theta)=\frac{Hypotenuse}{opposite\: side}=\frac{1}{sin\:\theta}}\)
\(cosec x\) is defined for all real numbers except for values where \(sin x\) is equal to zero. Therefore, we have vertical asymptotes at points where \(csc x\) is not defined. Also, using the values of \(sin x\), we have \(y=csc x\) as:
- When \(x = 0\), \(sin x = 0\) \(\rightarrow\) \(csc x =\) not defined
- When \(x = \frac{\pi }{6}\), \(sin x = \frac{1}{2}\)\(\rightarrow\) \(csc x = 2\)
- When \(x =\frac{\pi }{4}\), \(sin x=\frac{1}{\sqrt{2}}\)\(\rightarrow\) \(csc x = \sqrt{2}\)
- When \(x =\frac{\pi }{3}\), \(sin x= \frac{\sqrt{3}}{2}\)\(\rightarrow\) \(csc x = \frac{2}{\sqrt{3}}\)
- When \(x =\frac{\pi }{2}\), \(sin x = 1\)\(\rightarrow\) \(csc x=1\)
Therefore, by drawing the above points on a graph and connecting them, we have the cosecant graph as follows:

Related to This Article
More math articles
- How to Find the Area Enclosed by Curves Using Any Axes
- How Is the TSI Test Scored?
- Full-Length 6th Grade PSSA Math Practice Test
- How to Categorize Rational Numbers
- The Best Keyboards For Online Teaching
- How to Graph Inequality: Using Number Lines to Graph Inequalities
- ISEE Math- Test Day Tips
- Top 10 Tips to ACE the ACT Mathematics
- How to Find the Reciprocal Trigonometric Functions?
- The Consistent Player in Mathematics: How to Understand the Constant Rate of Change

















What people say about "How to Graph the Cosecant Function? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.