Alternating Series

The alternating series test is a type of series test used to determine the convergence of alternating series. In this step-by-step guide, you will learn more about the alternating series.

[include_netrun_products_block from-products="product/10-full-length-mea-grade-7-math-practice-tests-the-practice-you-need-to-ace-the-mea-grade-7-math-test/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]

Alternating Series

A step-by-step guide to alternating series

An alternating series is a series in which the terms alternate between positive and negative. The general form of an alternating series is as follows:

\(\color{blue}{\sum \:\left(-1\right)^ka_{k}}\)

Where \(a_{k}\ge 0\) and the first index is arbitrary. It means that the starting term for an alternating series can have any sign.

We can say that an alternating series \([a_k]^\infty_{k=1}\) converges if two conditions exist:

  • \(0\le a_{k+1}\le a_k\), for all \(k\ge 1\)
  • \(a_k→0\), as \(k→+∞\)

Related to This Article

What people say about "Alternating Series - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

X
51% OFF

Limited time only!

Save Over 51%

Take It Now!

SAVE $55

It was $109.99 now it is $54.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II