Alternating Series
The alternating series test is a type of series test used to determine the convergence of alternating series. In this step-by-step guide, you will learn more about the alternating series.
A step-by-step guide to alternating series
An alternating series is a series in which the terms alternate between positive and negative. The general form of an alternating series is as follows:
\(\color{blue}{\sum \:\left(-1\right)^ka_{k}}\)
Where \(a_{k}\ge 0\) and the first index is arbitrary. It means that the starting term for an alternating series can have any sign.
We can say that an alternating series \([a_k]^\infty_{k=1}\) converges if two conditions exist:
- \(0\le a_{k+1}\le a_k\), for all \(k\ge 1\)
- \(a_k→0\), as \(k→+∞\)
Related to This Article
More math articles
- Math Café: How to Learn the Art of Writing and Solving Two-variable Equations
- The Ultimate 7th Grade MCA Math Course (+FREE Worksheets)
- FREE 8th Grade MAP Math Practice Test
- 10 Most Common FTCE Math Questions
- How is the TABE Test Scored?
- 8th Grade M-STEP Math Worksheets: FREE & Printable
- Full-Length PSAT 10 Math Practice Test-Answers and Explanations
- Meet the Key Reasons to Start Learning Math Now
- Top 10 SIFT Math Practice Questions
- How long are Praxis Scores valid?
What people say about "Alternating Series - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.