Trigonometric Ratios
Trigonometry is a branch of mathematics that deals with the relationship between the angles and sides of a right triangle. This step-by-step guide teaches you trigonometric ratios.

Related Topics
A step-by-step guide to trigonometric ratios
Trigonometric ratios are the ratio of the lengths of the sides of a triangle. These ratios in trigonometry relate the ratio of the sides of a right triangle to the corresponding angle. There are six trigonometric ratios, namely, sine, cosine, tangent, secant, cosecant, and cotangent. These ratios are written as \(sin\), \(cos\), \(tan\), \(sec\), \(cosec\) (or \(csc\)), and \(cot\) in short.
The values of these trigonometric ratios can be calculated using the measurement of an acute angle, \(θ\), in a right triangle.

What are trigonometric ratios?
These six trigonometric ratios can be defined as:
Sine: In the given triangle, the \(sin\) of the angle \(θ\) can be considered as follows, \(\color{blue}{sin\: θ = \frac{AB}{AC}}\).
Cosine: In the given triangle, the \(cos\) of the angle \(θ\) can be considered as follows, \(\color{blue}{cos\: θ = \frac{BC}{AC}}\).
Tangent: In the given triangle, the \(tan\) of the angle \(θ\) can be considered as follows, \(\color{blue}{tan\: θ = \frac{AB}{BC}}\).
Cosecant: In the given triangle, the \(cosec\) of the angle \(θ\) can be considered as follows, \(\color{blue}{cosec\: θ = \frac{AC}{AB}}\).
Secant: In the given triangle, the \(sec\) of the angle \(θ\) can be considered as follows, \(\color{blue}{sec\: θ = \frac{AC}{BC}}\).
Cotangent: In the given triangle, the \(cot\) of the angle \(θ\) can be considered as follows, \(\color{blue}{cot\: θ = \frac{BC}{AB}}\).
Trigonometric ratios formulas
We can use the shorthand form of trigonometric ratios to compare the length of both sides with the base angle. The angle \(θ\) is acute \((θ<90º)\) and in general is measured with reference to the positive \(x\)-axis, in the anticlockwise direction. The basic trigonometric ratio formulas are given below,
- \(\color{blue}{sin\: θ = \frac{Perpendicular}{Hypotenuse}}\)
- \(\color{blue}{cos\: θ = \frac{Base}{Hypotenuse}}\)
- \(\color{blue}{tan\: θ = \frac{Perpendicular}{Base}}\)
- \(\color{blue}{sec\: θ =\frac{Hypotenuse}{Base}}\)
- \(\color{blue}{cosec\: θ = \frac{Hypotenuse}{Perpendicular}}\)
- \(\color{blue}{cot\: θ = \frac{Base}{Perpendicular}}\)
Trigonometric Ratios – Example 1:
Find the value of \(tan\:θ\) if \(sin\:θ\:=\frac{10}{3}\) and \(cos\:θ\:=\frac{5}{3}\:\).
Solution: Use the formula of the trigonometric ratio to solve this problem: \(tan\: θ = \frac{Perpendicular}{Base}\).
\(tan\:θ =\frac {10}{5}=2\)
Related to This Article
More math articles
- Best Office Chairs for Online Teaching
- How to Solve Multi-Step Equations? (+FREE Worksheet!)
- 5th Grade SBAC Math FREE Sample Practice Questions
- How Is the TSI Test Scored?
- 5th Grade CMAS Math Worksheets: FREE & Printable
- The Ultimate TSI Math Formula Cheat Sheet
- FREE FTCE Math Practice Test
- The Ultimate 6th Grade WY-TOPP Math Course (+FREE Worksheets)
- TASC Math – Test Day Tips
- Number Properties Puzzle – Challenge 11
What people say about "Trigonometric Ratios - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.