Trigonometric Ratios
What are trigonometric ratios?
Sine: In the given triangle, the \(sin\) of the angle \(θ\) can be considered as follows, \(\color{blue}{sin\: θ = \frac{AB}{AC}}\).
Cosine: In the given triangle, the \(cos\) of the angle \(θ\) can be considered as follows, \(\color{blue}{cos\: θ = \frac{BC}{AC}}\).
Tangent: In the given triangle, the \(tan\) of the angle \(θ\) can be considered as follows, \(\color{blue}{tan\: θ = \frac{AB}{BC}}\).
Cosecant: In the given triangle, the \(cosec\) of the angle \(θ\) can be considered as follows, \(\color{blue}{cosec\: θ = \frac{AC}{AB}}\).
Secant: In the given triangle, the \(sec\) of the angle \(θ\) can be considered as follows, \(\color{blue}{sec\: θ = \frac{AC}{BC}}\).
Cotangent: In the given triangle, the \(cot\) of the angle \(θ\) can be considered as follows, \(\color{blue}{cot\: θ = \frac{BC}{AB}}\).
Trigonometric ratios formulas
We can use the shorthand form of trigonometric ratios to compare the length of both sides with the base angle. The angle \(θ\) is acute \((θ<90º)\) and in general is measured with reference to the positive \(x\)-axis, in the anticlockwise direction. The basic trigonometric ratio formulas are given below,
- \(\color{blue}{sin\: θ = \frac{Perpendicular}{Hypotenuse}}\)
- \(\color{blue}{cos\: θ = \frac{Base}{Hypotenuse}}\)
- \(\color{blue}{tan\: θ = \frac{Perpendicular}{Base}}\)
- \(\color{blue}{sec\: θ =\frac{Hypotenuse}{Base}}\)
- \(\color{blue}{cosec\: θ = \frac{Hypotenuse}{Perpendicular}}\)
- \(\color{blue}{cot\: θ = \frac{Base}{Perpendicular}}\)
Trigonometric Ratios – Example 1:
Find the value of \(tan\:θ\) if \(sin\:θ\:=\frac{10}{3}\) and \(cos\:θ\:=\frac{5}{3}\:\).
Solution: Use the formula of the trigonometric ratio to solve this problem: \(tan\: θ = \frac{Perpendicular}{Base}\).
\(tan\:θ =\frac {10}{5}=2\)
Related to This Article
More math articles
- How to Find Probability of an Event? (+FREE Worksheet!)
- Number Properties Puzzle – Challenge 13
- 8 Useful Tips on Learning Mathematics Effectively
- How to Decipher Patterns: A Comprehensive Guide to Understanding Mathematical Sequences
- FREE ACT Math Practice Test
- Grade 10 Math Worksheets: FREE & Printable
- Best Books for Students Preparing for the SAT Math Test
- 7th Grade PARCC Math FREE Sample Practice Questions
- The Ultimate 6th Grade NHSAS Math Course (+FREE Worksheets)
- Properties of the Vertical Lines























What people say about "Trigonometric Ratios - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.