The Remainder Theorem
The remainder theorem is a formula used to find the remainder when a polynomial is divided by a linear polynomial. In this step-by-step guide, you learn more about the remainder theorem.

When a certain number of things are divided into groups with an equal number of things in each group, the number of things left is known as the remainder. This is what “remains” after division.
Step by step guide to the remainder theorem
The remainder theorem is expressed as follows:
When a polynomial \(a(x)\) is divided by a linear polynomial \(b(x)\) whose zero is \(x = k\), the remainder is obtained by \(r = a (k)\). The remaining theorem enables us to compute the remainder of dividing any polynomial by a linear polynomial without performing the steps of the division algorithm.
Remainder theorem formula
The general formula of the remainder theorem is given as follows:
\(\color{blue}{p(x)=(x-c).q(x)+r(x)}\)
When \(p(x)\) is divided by \((x-a)\): remainder\(=p(a)\)
OR
When \(p(x)\) is divided by \((ax+b)\): remainder\(=p\left(-\frac{b}{a}\right)\)
Notes:
- When a polynomial \(a(x)\) is divided by a linear polynomial \(b(x\)) whose zero is \(x = k\), the remainder is given by \(r = a(k)\)
- The remainder theorem formula is: \(p(x)=(x-c).q(x)+r(x)\)
- The basic formula to check the division is: Dividend \(=\) (Divisor \(×\) Quotient) \(+\) Remainder
The Remainder Theorem – Example 1:
Find the remainder when \(p(x)=3x^5-x^4+x^3-4x^2+2\) is divided by \(q(x):x-1\).
Replace the zero of \(q(x)\) into the polynomial \(p(x)\) to find the remainder \(r\):
\(x-1=0 → x=1\)
\(p(1)=3(1)^5-(1)^4+(1)^3-4(1)^2+2\)
\(=3-1+1-4+2\)
\(=1\)
Therefore, the remainder is \(1\).
The Remainder Theorem – Example 2:
Find the remainder when \(p(x)=x^3-x^2+x-1\) is divided by \(q(x):x+1\).
Replace the zero of \(q(x)\) into the polynomial \(p(x)\) to find the remainder \(r\):
\(x+1=0 → x=-1\)
\(p(-1)=(-1)^3-(1)^2+(-1)-1\)
\(=-1-1-1-1\)
\(=-4\)
Therefore, the remainder is \(-4\).
Exercises for the Remainder Theorem
- Find the remainder after \(2x^2-5x-1\) is divided by \(x-5\).
- Use the remainder theorem to evaluate \(f(x)=2x^5+4x^4-3x^3+8x^2+7\) at \(x=2\).
- Find the remainder when \(4x^3-5x+1\) is divided by \(2x-1\).
- Use the remainder theorem to find the remainder \((x^6+4x^5+9x^3-4x^2+10) \div (x+1)\).

- \(\color{blue}{24}\)
- \(\color{blue}{143}\)
- \(\color{blue}{-1}\)
- \(\color{blue}{-6}\)
Related to This Article
More math articles
- Best Smartphones For Math Students
- Full-Length SSAT Middle Level Math Practice Test
- How to Add and Subtract Integers: Word Problems
- Number Properties Puzzle – Challenge 18
- What Is a Polynomial?
- Unraveling the Art of Graphing: A Deep Dive into Absolute Value Functions
- Tips for Making Math Study Sessions More Productive
- Overview of the AFOQT Mathematics Test
- 8th Grade STAAR Math Worksheets: FREE & Printable
- Best Free Apps That Solve Math Problems for You
What people say about "The Remainder Theorem - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.