The Law of Sines
The Law of Sines – Example 2:
\(75+42+x=180→ 117+x=180→x=180-117=63 ^\circ \)
To find sides use the law of sines: \(\frac {a}{sin\ A}=\frac {b}{sin\ B}=\frac {c}{sin\ C}\)
\(\frac {22}{sin\ 75}=\frac {b}{sin\ 42}= \frac {c}{sin\ 63}\)
Now, use proportional ratios: \(\frac {a}{b}=\frac{c}{d} → a×d=c×b\)
\(\frac {22}{sin\ 75}=\frac {b}{sin\ 42} → b=\frac {22 × sin\ 42 } {sin\ 75} =\frac{22 × 0.67}{0.96}=\frac {14.74}{0.96}=15.35\ cm\)
\(\frac {22}{sin\ 75}= \frac {c}{sin\ 63} → c=\frac {22 × sin\ 63 } {sin\ 75} =\frac{22 × 0.9}{0.96}=\frac {19.8}{0.96}=20.62\ cm\)
Exercises for the Law of Sines
Find the side of c in the ABC triangle.
1.
2.
3.
- \(\color{blue}{73.33}\)
- \(\color{blue}{6.51}\)
- \(\color{blue}{20.53}\)
Related to This Article
More math articles
- How to Use Graphs to Solve Equation Systems: Word Problems
- Everything You Need to Know about Indeterminate and Undefined Limits
- SAT Math vs. ACT Math: the Key Differences
- Using Number Lines to Compare and Order Rational Numbers
- Top 10 Tips to ACE the SSAT Math Test
- 4th Grade Wisconsin Forward Math Worksheets: FREE & Printable
- How to Estimate Limits from Tables
- AFOQT Math Formulas
- How to Break Fractions and Mixed Numbers Apart to Add or Subtract
- How to Find the Area of a Triangle Using Trigonometry
























What people say about "The Law of Sines - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.