In this article, you will learn how to Subtract Mixed Numbers with similar (like) or Unlike Denominators in few easy and simple steps.

## Related Topics

- How to Simplify Fractions
- How to Multiply and Divide Fractions
- How to Add Mixed Numbers
- How to Multiply Mixed Numbers
- How to Divide Mixed Numbers

## Step by step guide for Subtracting Mixed Numbers

Use the following steps for subtracting mixed numbers.

- Subtract the whole number of the second mixed numbers from the whole number of the first mixed number.
- Subtract the second fraction from the first one. If the second fraction is bigger than the first fraction, borrow 1 whole number from the first mixed number.
- Find the Least Common Denominator (
**LCD**) if necessary. - Add the result of whole numbers and fractions.
- Write your answer in the lowest terms.

### Subtract Mixed Numbers – Example 1:

Subtract . \( 2 \ \frac{3}{5} \ – \ 1 \ \frac{1}{3} = \)

**Solution:**

Rewriting our equation with parts separated, \(2 \ + \ \frac{3}{5} \ – \ 1 \ – \ \frac{1}{3}\)

Solving the whole number parts \(2 \ – \ 1=1\) , Solving the fraction parts, \(\frac{3}{5} \ – \ \frac{1}{3}=\frac{9 \ – \ 5}{15}=\frac{4}{15}\)

Combining the whole and fraction parts, \(1 \ + \ \frac{4}{15}=1 \ \frac{4}{15}\)

### Subtract Mixed Numbers – Example 2:

Subtract . \( 5 \ \frac{5}{8} \ – \ 2 \ \frac{1}{4} = \)

**Solution:**

Rewriting our equation with parts separated, \(5 \ +\ \frac{5}{8} \ – \ 2 \ – \ \frac{1}{4}\)

Solving the whole number parts \(5 \ – \ 2=3\) , Solving the fraction parts, \(\frac{5}{8} \ – \ \frac{1}{4}=\frac{5 \ – \ 2}{8}=\frac{3}{8}\)

Combining the whole and fraction parts, \(3 \ + \ \frac{3}{8}=3 \ \frac{3}{8}\)

Combining the whole and fraction parts, \(3 \ + \ \frac{3}{8}=3 \ \frac{3}{8}\)

### Subtract Mixed Numbers – Example 3:

Subtract **.** \( 5 \ \frac{2}{3} \ – \ 2 \ \frac{1}{4} = \)

**Solution:**

Rewriting our equation with parts separated, \(5+\frac{2}{3}–2-\frac{1}{4}\)

Solving the whole number parts \(5-2=3\), Solving the fraction parts, \(\frac{2}{3}-\frac{1}{4}=\frac{8-3}{12}=\frac{5}{12}\)

Combining the whole and fraction parts, \(3+\frac{5}{12}=3 \ \frac{5}{12}\)

### Subtract Mixed Numbers – Example 4:

Subtract . \( 3 \ \frac{4}{5} \ – \ 1 \ \frac{1}{2} = \)

**Solution:**

Rewriting our equation with parts separated, \(3+\frac{4}{5}-1-\frac{1}{2}\)

Solving the whole number parts \(3-1=2\), Solving the fraction parts, \(\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

Combining the whole and fraction parts, \(2+\frac{3}{10}=2 \ \frac{3}{10}\)

## Subtract Mixed Numbers – Exercises

### Subtract.

- \(\color{blue}{4\frac{1}{2}-3\frac{1}{2}}\)
- \(\color{blue}{3\frac{3}{8}-3\frac{1}{8}}\)
- \(\color{blue}{6\frac{3}{5}-5\frac{1}{5}}\)
- \(\color{blue}{2\frac{1}{3}-1\frac{2}{3}}\)
- \(\color{blue}{6\frac{1}{6}-5\frac{1}{2}}\)
- \(\color{blue}{3\frac{1}{3}-1\frac{1}{3}}\)

### Download Adding and Subtracting Mixed Numbers Worksheet

- \(\color{blue}{1}\)
- \(\color{blue}{\frac{1}{4}}\)
- \(\color{blue}{1\frac{2}{5}}\)
- \(\color{blue}{\frac{2}{3}}\)
- \(\color{blue}{\frac{2}{3}}\)
- \(\color{blue}{2}\)