Finding Derivatives Made Easy! Derivative of A Chain of Functions
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{{url}}/?ajax-add-to-cart={{id}}" product-item-button-custom-url-if-not-salable="{{productUrl}} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"] [include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{{url}}/?ajax-add-to-cart={{id}}" product-item-button-custom-url-if-not-salable="{{productUrl}} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
Definition:
The chain rule is a method in calculus used to find the derivative of a composite function. It’s like a two-step process: first, you take the derivative of the outer function, and then you multiply it by the derivative of the inner function. This helps you understand how changes in one variable affect a chain of functions. For function \( f(x) \) and \( g(x) \), to find the derivative of \( f(g(x)) \), we have: For additional educational resources,.
\( \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x) \)
Let’s consider this example: \( \text{Find the derivative of } (x + 1)^3. \)
- Define the inner and outer functions and their derivatives
\( g(x) = x + 1, \ g'(x) = 1 \)
\( f(u) = u^3, \ f'(u) = 3u^2 \)
- Apply the chain rule
\( \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x) = 3(x + 1)^2 \cdot 1 \)
Chain rule for more functions:
Differentiating a composition of four functions using the chain rule involves taking the derivative of each function sequentially and multiplying them together. It’s like unwrapping nested functions layer by layer, applying derivatives at each step to reveal the rate of change of the entire composition.
\( f = f(u), \ u = u(v), \ v = v(w), \ w = w(x) \)
\( \frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dw} \cdot \frac{dw}{dx} \)
This represents the extended chain rule formula for the case where you have a composition of four functions, allowing you to differentiate \( f(u(v(w(x)))) \) with respect to \( x \).
Here is an example for this formula: \( \text{Find the derivative of } \sin(\cos(x^3)). \)
1.Define functions
\( v(x) = x^3 \)
\( u(v) = \cos v \)
\( f(u) = \sin u \)
2. Define derivatives
\( v'(x) = 3x^2 \)
\( u'(v) = -\sin v \)
\( f'(u) = \cos u \)
3. Apply chain rule
\( \frac{df}{dx} = f'(u) \cdot u'(v) \cdot v'(x) \)
4. Simplify
\( = \cos(\cos(x^3)) \cdot (-\sin(x^3)) \cdot 3x^2 \)
This next example includes radical and logarithm derivatives, which will be explained later. But if you already know how the derivative of those functions work, then this problem is for you to better understand the chain rule:
\( \text{Find the derivative of } \sqrt{\ln(e^{x^2})}. \)
1.Define functions
\( w(x) = x^2 \)
\( v(w) = e^w \)
\( u(v) = \ln(v) \)
\( f(u) = \sqrt{u} \)
2. Define derivatives
\( w'(x) = 2x \)
\( v'(w) = e^w \)
\( u'(v) = \frac{1}{v} \)
\( f'(u) = \frac{1}{2\sqrt{u}} \)
3. Apply chain rule
\( \frac{df}{dx} = f'(u) \cdot u'(v) \cdot v'(w) \cdot w'(x) \)
4. Simplify
\( = \frac{1}{2\sqrt{\ln(e^{x^2})}} \cdot \frac{1}{e^{x^2}} \cdot e^{x^2} \cdot 2x \)
Related to This Article
More math articles
- How to Find Elapsed Time?
- Top 10 Pre-Algebra Prep Books (Our 2024 Favorite Picks)
- How to Solve Conditional and Binomial Probabilities?
- Embark on Your SHSAT Math Adventure: Introducing the “SHSAT Math for Beginners” Solution Manual
- How to Differentiate Trigonometric Reciprocals
- Best Blue Light Glasses for Teachers and Students
- How to Add and Subtract Polynomials? (+FREE Worksheet!)
- How to Solve Word Problems Involving Completing a Table and Making a Graph?
- How to Solve Systems of Equations? (+FREE Worksheet!)
- How do Find Amplitude, Period, and Phase Shift?


























What people say about "Finding Derivatives Made Easy! Derivative of A Chain of Functions - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.