How to Add and Subtract in Scientific Notations

How to Add and Subtract  in Scientific Notations

This article teaches you how to add and subtract in Scientific Notations using a few simple steps.

Related Topics

Scientific notation is one of the most common methods in mathematics for displaying very large and very small numbers that make calculations with those numbers easier. With a scientific notation, each number can be written as a product of two numbers.

To add or subtract numbers in scientific notion, we need to have the same power of the base (number 10), and only decimal parts are added or subtracted.

Step by step guide to Add and Subtract Scientific Notations

Adding and subtracting numbers in scientific notion:

  • Step 1: Adjust the powers in the numbers so that they have the same power. (It is easier to adjust the smaller power to equal the larger one)
  • Step 2: Add or subtract the numbers (only decimal parts).
  • Step 3: Convert the answer to scientific notation if needed.

Addition and Subtraction in Scientific Notation Example 1:

Write the answer in scientific notation. \(11\times 10^7 -\ 4.4\times 10^7=\)

Solution:

Since two numbers have the same power, factor \(10^7\) out: \( (11 -\ 4.4 ) \times 10^7 = 6.6\times 10^7\)

Addition and Subtraction in Scientific Notation Example 2:

Write the answer in scientific notation. \(9.7\times 10^4 -\ 33\times 10^3=\)

Solution:

Convert the second number to have the same power of \(10 \): \(33\times 10^3=3.3\times 10^4\).

Now, two numbers have the same power of \(10 \). Subtract: \( 9.7\times 10^4 -\ 3.3\times 10^4 = (9.7 -\ 3.3 ) \times 10^4 = 6.4\times 10^4\)

Addition and Subtraction in Scientific Notation Example 3:

Write the answer in scientific notation. \(3.5\times 10^6 +\ 4.7\times 10^6=\)

Solution:

Since two numbers have the same power, factor \(10^6\) out: \( (3.5 +\ 4.7 ) \times 10^6 = 8.7\times 10^6\)

Addition and Subtraction in Scientific Notation Example 4:

Write the answer in scientific notation. \(2.6\times 10^8 +\ 4.4\times 10^7=\)

Solution:

Convert the second number to have the same power of \(10 \): \(4.4\times 10^7=0.44\times 10^8\).

Now, two numbers have the same power of \(10 \). Add: \( 2.6\times 10^8 +\ 0.44\times 10^8 = (2.6 +\ 0.44 ) \times 10^8 = 3.04\times 10^8\)

Exercises for Adding and Subtracting Scientific Notations

Write the answer in scientific notation.

  1. \(\color{blue}{5.1\times 10^5 +\ 3.9\times 10^5=}\)
  2. \(\color{blue}{8.9\times 10^7 -\ 6.9\times 10^7=}\)
  3. \(\color{blue}{1.2\times 10^4 +\ 3\times 10^3=}\)
  4. \(\color{blue}{5.3\times 10^6 -\ 2.2\times 10^5=}\)
  5. \(\color{blue}{1.6\times 10^9 +\ 4.8\times 10^9=}\)
  6. \(\color{blue}{9.8\times 10^3 -\ 6.1\times 10^3=}\)
  1. \(\color{blue}{9\times 10^5}\)
  2. \(\color{blue}{2\times 10^7}\)
  3. \(\color{blue}{1.5\times 10^4}\)
  4. \(\color{blue}{5.08\times 10^6}\)
  5. \(\color{blue}{6.4\times 10^9}\)
  6. \(\color{blue}{3.7\times 10^3}\)

Related to "How to Add and Subtract in Scientific Notations"

How to Multiply and Divide in Scientific Notation
How to Multiply and Divide in Scientific Notation
How to Solve Function Notation
How to Solve Function Notation
How to Solve Scientific Notation
How to Solve Scientific Notation
How to Add and Subtract Decimals
How to Add and Subtract Decimals

Leave a Reply

36% OFF

Download Instantly

X

How Does It Work?

Find Books

1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.

add to cart

2. Add to Cart

Add the eBook to your cart.

checkout

3. Checkout

Complete the quick and easy checkout process.

download

4. Download

Immediately receive the download link and get the eBook in PDF format.

Why Buy eBook From Effortlessmath?

Save money

Save up to 70% compared to print

Instantly download

Instantly download and access your eBook

help environment

Help save the environment

Access

Lifetime access to your eBook

Test titles

Over 2,000 Test Prep titles available

Customers

Over 80,000 happy customers

Star

Over 10,000 reviews with an average rating of 4.5 out of 5

Support

24/7 support

Anywhere

Anytime, Anywhere Access

Find Your Test

Schools, tutoring centers, instructors, and parents can purchase Effortless Math eBooks individually or in bulk with a credit card or PayPal. Find out more…