The Binomial Theorem
The Binomial Theorem is a way of expanding an expression that has been raised to any finite power. In this post, you will learn more about the binomial theorem.

The binomial theorem primarily helps to find the symbolic value of the algebraic expression of the form \((x + y)^n\).
Related Topics
- How to Solve Infinite Geometric Series
- How to Solve Geometric Sequences
- How to Solve Arithmetic Sequences
A step-by-step guide to the binomial theorem
According to the binomial theorem, it is possible to expand any non-negative power of binomial \((x + y)\) into a sum of the form, \((x+y)^n=\begin{pmatrix}n\\ 0\end{pmatrix}x^n y^0+ \begin{pmatrix}n\\ 1\end{pmatrix}x^{n-1} y^1 + \begin{pmatrix}n\\ 2\end{pmatrix}x^{n-2} y^2+…+ \begin{pmatrix}n\\ n-1\end{pmatrix}x^1 y^{n-1}+ \begin{pmatrix}n\\ n\end{pmatrix}x^0 y^n\)
where \(n≥0\) is an integer and each \(\begin{pmatrix}n\\k\end{pmatrix}\) is a positive integer known as a binomial coafficient.
Note: When power is zero, the corresponding power expression is \(1\).
Using summation notation, the binomial theorem can be given as:
\(\color{blue}{(x+y)^n=\sum _{k=0}^n\: \begin{pmatrix}n\\k\end{pmatrix} x^{n-k}y^{k}}\) \(\color{blue}{= \sum _{k=0}^n\: \begin{pmatrix}n\\k\end{pmatrix} x^{k}y^{n-k}}\)
The binomial theorem formula
The binomial theorem formula helps to expand a binomial that has been increased to a certain power. The binomial theorem states: if \(x\) and \(y\) are real numbers, then for all \(n ∈ N\):
\(\color{blue}{(x+y)^n=\sum _{r=0}^n\: (^nC_r)x^{n-r}y^{r}}\)
where, \(\color{blue}{^nC_r}\)\(\color{blue}{=\frac{n!}{r!(n-r)!}}\)
Properties of the binomial theorem
- The number of coefficients in the binomial expansion of \((x+y)^n\) is equal to \((n+1)\).
- In the expansion of \((x+y)^n\),there are \((n+1)\) terms.
- The first and the last terms are \(x^n\) and \(y^n\) respectively.
- From the beginning of the expansion, the powers of \(x\) decrease from \(n\) to \(0\), and the powers of \(a\) increase from \(0\) to \(n\).
- The general term in the expansion of \((x + y)^n\) is the \((r +1)^{th}\) term that can be represented as \(T_{r+1}\), \(T_{r+1}=\)\(^nC_r\)\(x^{n-r}y^r\)
- The binomial coefficients in the expansion are arranged in an array called the Pascal triangle. This developed model can be summarized with a binomial theorem formula.
- In the binomial expansion of \((x+y)^n\), the \(r^{th}\) term from the end is \((n-r+2)^{th}\) term from the beginning.
- If \(n\) is odd, then in \((x + y)^n\), the middle terms are \(\frac{(n+1)}{2}\) and \(\frac{(n+3)}{2}\).
- If \(n\) is even, then in \((x + y)^n\), the middle term \(=(\frac{n}{2})+1\)
The Binomial Theorem – Example 1:
Expand \((x+2)^5\) using the binomial theorem.
Use this formula to expand: \(\color{blue}{(x+y)^n=\sum _{k=0}^n\: \begin{pmatrix}n\\k\end{pmatrix} x^{n-k}y^{k}}\)
\(=\sum _{k=0}^5\: \begin{pmatrix}5\\k\end{pmatrix}x^{(5-k)}.2^k\)
\((x+2)^5=\frac{5!}{0!(5-0)!}x^5.2^0+ \frac{5!}{1!(5-1)!}x^4.2^1+ \frac{5!}{2!(5-2)!}x^3.2^2+ \frac{5!}{3!(5-3)!}x^2.2^3+ \frac{5!}{4!(5-4)!}x^1.2^4+ \frac{5!}{5!(5-5)!}x^0.2^5 \)
\(x^5+10x^4+40x^3+80x^2+80x+32\)
Exercise for the Binomial Theorem
Find binomial expansion by using the binomial theorem.
- \(\color{blue}{\left(x^2+4\right)^4}\)
- \(\color{blue}{\left(2x+3x^2\right)^5}\)
- \(\color{blue}{\left(2x+5\right)^3}\)

- \(\color{blue}{x^8+16x^6+96x^4+256x^2+256}\)
- \(\color{blue}{32x^5+240x^6+720x^7+1080x^8+810x^9+243x^{10}}\)
- \(\color{blue}{8x^3+60x^2+150x+125}\)
Related to This Article
More math articles
- 4th Grade MAP Math Practice Test Questions
- Geometry Puzzle – Challenge 68
- How to Find the Area of Composite Shapes?
- Full-Length ATI TEAS 7 Math Practice Test
- How to Construct and Interpret Scale Drawing? (+FREE Worksheet!)
- What skills Do I need for the GED Math Test?
- 10 Most Common CLEP College Algebra Math Questions
- Top 10 Tips to ACE the SAT Mathematics
- 5th Grade FSA Math Practice Test Questions
- How to Find Missing Angels in Quadrilateral Shapes? (+FREE Worksheet!)
What people say about "The Binomial Theorem"?
No one replied yet.