How to Find the Measures of Central Tendency? (+FREE Worksheet!)
In this article, you will learn how to find the Measures of Central Tendency in a few simple steps.
Step-by-step guide to find the Measures of Central Tendency
Measures of Variability allow us to summarize an entire data set with a single value. Mean, Mode, and Median are all examples of Measures of Central Tendency.
Mean: It means average, and to calculate the mean, we divide the sum of the numbers by the number of observations. It can be used with discrete and continuous data.
Median: The middle value that separates the higher half from the lower half. Numbers are arranged in either ascending or descending order. The middle number is then taken.
Mode: the most frequent value. It is used to show the most popular option and is the highest bar in the histogram.
To decide which one to use, the following should be considered:
- The mean gives all values the same importance, even very large or very small values, while the median focuses more on the values that are in the middle of the data set; So, the mean can use the data more fully. However, as mentioned, the mean can be strongly influenced by one or two very large or very small values.
- There is always only one value for the median or mean on a data set, but a set can have more than one mode.
- Among the Measures of Central Tendency, the mode is less used than the mean and median. However, in some cases, the mode can be significantly useful.
Finding the Measures of Central Tendency: Example 1:
Find the mean, median, and mode of the data set. \(10, 11, 25, 16, 16, 46, 29, 35\)
Solution: Mean: first add the values \(10+11+25+16+16+46+29+35=188\)
Divide by \(8\), the number of values. Mean\(=\frac{188}{8}=23.5\)
Median: Order the data from least to greatest. \(10, 11, 16, 16, 25, 29, 35, 45\)
Average the two middle values. \(=\frac{16+25}{2}=20.5\)
So, \(20.5\) is median.
Mode: the value \(16\) occurs two times. So, \(16\) is the mode.
Finding the Measures of Central Tendency Example 2:
Find the mean, median, and mode of the data set. \(22, 35, 45, 53, 52, 35, 11, 16, 35, 11\)
Solution: Mean: first add the values \(22+35+45+53+52+35+11+16+35+11=315\)
Divide by \(10\), the number of values. Mean\(=\frac{315}{10}=31.5\)
Median: Order the data from least to greatest. \(11, 11, 16, 22, 35, 35, 35, 45, 52, 53\)
Average the two middle values. \(=\frac{35+35}{2}=35\)
So, \(35\) is median.
Mode: the value \(35\) occurs three times. So, \(35\) is the mode.
Finding the Measures of Central Tendency Example 3:
Find the mean, median, and mode of the data set. \(9, 2, 5, 21, 16, 5, 36, 13, 10\)
Solution: Mean: first add the values \(9+2+5+21+16+5+36+13+10=117\)
Divide by \(9\), the number of values. Mean\(=\frac{117}{9}=13\)
Median: Order the data from least to greatest. \(2, 5, 5, 9, 10, 13, 16, 21, 36\)
The middle value is the median. So, median\(=10\)
Mode: the value \(5\) occurs two times. So, \(5\) is the mode.
Finding the Measures of Central Tendency Example 4:
Find the mean, median, and mode of the data set. \(25, 36, 39, 8, 17, 45, 60, 1, 36, 42, 10\)
Solution: Mean: first add the values \(25+36+39+8+17+45+60+1+36+42+10=319\)
Divide by \(11\), the number of values. Mean\(=\frac{319}{11}=29\)
Median: Order the data from least to greatest. \(1, 8, 10, 17,25, 36, 36, 39, 42, 45, 60 \)
The middle value is the median. So, median\(=36\)
Mode: the value \(36\) occurs two times. So, \(36\) is the mode.
Exercises for Finding the Measures of Central Tendency
Calculate the mean, median, and mode for the following data sets.
- Points scored by a basketball player: {\(8, 3, 17, 26, 13, 3, 30\)}
- Marks on a set of tests: {\(64, 88, 95, 75, 69, 88, 70, 77\)}
- Waiting time, in minutes: {\(13, 19, 11, 19, 7, 32, 45, 33\)}
- Monthly rent \($\): {\(630, 585, 670, 710, 670, 600, 590\)}

- Mean: \(14.29\) Median: \(13\) Mode: \(3\)
- Mean: \(78.25\) Median: \(76\) Mode: \(88\)
- Mean: \(22.38\) Median: \(19\) Mode: \(19\)
- Mean: \(636.43\) Median: \(630\) Mode: \(670\)
Related to This Article
More math articles
- Count Vertices, Edges, and Faces
- The Ultimate 7th Grade NDSA Math Course (+FREE Worksheets)
- 3rd Grade K-PREP Math Worksheets: FREE & Printable
- How to Understand Functions
- 8th Grade STAAR Math Practice Test Questions
- How to Mastering the Art of Function Transformations
- 7th Grade SBAC Math Practice Test Questions
- 3rd Grade TNReady Math Worksheets: FREE & Printable
- ASTB Math-Test Day Tips
- Life’s Fractional Challenges: How to Solve Word Problems on Adding and Subtracting Fractions with Different Denominators



















What people say about "How to Find the Measures of Central Tendency? (+FREE Worksheet!) - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.