How to Find The Derivative of a Trigonometric Function
Using the limit formula to derive functions, we can uncover the general derivative form of trigonometric functions. This process requires an understanding of trigonometric identities. By applying these identities within the limit framework, it becomes possible to systematically determine the derivatives of various trigonometric functions, enhancing calculus applications.

Derivative of \( sin(x) \) :
\( \begin{align*}
\frac{d}{dx} \sin x &= \lim_{h \to 0} \frac{\sin(x + h) – \sin x}{h} \\
&= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h – \sin x}{h} \\
&= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h – 1}{h} + \cos x \cdot \frac{\sin h}{h}\right) \\
&= \sin x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \sin x \cdot 0 + \cos x \cdot 1 \\
&= \cos x
\end{align*}\)
So the derivative of \(sin (x)\) , is \(cos (x)\). Now, using chain rule, we can have:
\( sin(f(x))=cos (f(x))×f’ (x) \)
Derivative of \(cos (x) \):
Almost the same procedure can be used to find the derivative of \( cos (x) \) :
\(\begin{align*}
\frac{d}{dx} \cos x &= \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \\
&= \lim_{h \to 0} \frac{\cos x \cos h – \sin x \sin h – \cos x}{h} \\
&= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h – 1}{h} – \sin x \cdot \frac{\sin h}{h}\right) \\
&= \cos x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} – \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \cos x \cdot 0 – \sin x \cdot 1 \\
&= -\sin x
\end{align*}\)
Derivative of \(tan (x) \) and \(cot (x) \):
Now we could do the same thing for tangent and cotangent, but it would be easier to use quotient rule and find them using \( \tan x = \frac{\sin x}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \):
\( \frac{d}{dx} \tan x = \frac{d}{dx} \left( \frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \cos x – \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x \)
And:
\( \frac{d}{dx} \cot x = \frac{d}{dx} \left( \frac{\cos x}{\sin x} \right) = \frac{\sin x \cdot (-\sin x) – \cos x \cdot \cos x}{\sin^2 x} = \frac{-\sin^2 x – \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x \)
Related to This Article
More math articles
- 10 Most Common 5th Grade IAR Math Questions
- How to Decipher Limits and Function Values
- How to Use Properties of Logarithms? (+FREE Worksheet!)
- 10 Most Common 6th Grade Common Core Math Questions
- Best Calculators for High School Algebra I
- 8th Grade NYSE Math FREE Sample Practice Questions
- How to Interpret Pie Graphs? (+FREE Worksheet!)
- Top 10 5th Grade PSSA Math Practice Questions
- 6th Grade WVGSA Math Worksheets: FREE & Printable
- How to Develop Foundational Math Skills for Career Success
What people say about "How to Find The Derivative of a Trigonometric Function - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.