Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses
To write the equation of an ellipse, we need the parameters that will be explained in this article.

An Ellipse is a closed curve formed by a plane. There are two types of ellipses: Horizontal and Vertical
- If major axis of an ellipse is parallel to \(x\), its called horizontal ellipse.
- If major axis of an ellipse is parallel to \(y\), its called vertical ellipse.
Step by Step Guide to Find Equation of Ellipses
The standard form of the equation of an Ellipse is:
- Horizontal: \(\color{blue}{\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1}\)
- Vertical: \(\color{blue}{\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1}\)
The center is: \(\color{blue}{(h, k)}\)
The vertices are: \(\color{blue}{(h+a, k), (h-a, k)}\)
The foci are: \(\color{blue}{(h+c, k), (h-c, k)}\), where \(\color{blue}{c=\sqrt{a^2-b^2}}\)
The Values can be calculated according to the standard form of the equation of ellipses.

Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses – Example 1:
Find the center, vertices, and foci of this ellipse: \(\frac{(x-2)^2}{36}+\frac{(y+4)^2}{16}=1\)
Solution:
The standard form of the equation of an Ellipse is: \(\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1\)
Then, \((h=2, k=-4, a=6, b=4)\).
So, the center is \((2, -4)\).
The vertices are \((h+a, k), (h-a, k) →(8, 4), (-4, 4)\)
Evaluate \(c\): \(c=\sqrt{a^2-b^2}\) \(=\sqrt{36-16}=2\sqrt{5}\)
Then the foci are \((2+2\sqrt{5}, -4)\) and \((2-2\sqrt{5}, -4)\).
Exercises for Equation of Finding the Foci, Vertices, and Co– Vertices of Ellipses
Find the center, vertices, and foci of each ellipse.
- \(\color{blue}{9x^2+4y^2=1}\)
- \(\color{blue}{16x^2+25y^2=100}\)
- \(\color{blue}{25x^2+4y^2+100x-40y=400}\)
- \(\color{blue}{\frac{(x-1)^2}{9}+\frac{y^2}{5}=100}\)

- \(\color{blue}{Center: (0, 0), Vertices: (0,\frac{1}{2}), (0, -\frac{1}{2}), foci: (0, \frac{\sqrt{5}}{6}), (0, -\frac{\sqrt{5}}{6})}\)
- \(\color{blue}{Center: (0, 0), Vertices: (\frac{5}{2}, 0), (-\frac{5}{2}, 0), foci: (\frac{3}{2}, 0), (-\frac{3}{2}, 0)}\)
- \(\color{blue}{Center: (-2, 5), Vertices: (-2,5+5\sqrt{6}), (-2, 5-5\sqrt{6}), foci: (-2, 5+3\sqrt{14}), (-2, 5-3\sqrt{14})}\)
- \(\color{blue}{Center: (1, 0), Vertices: (31, 0), (-29, 0), foci: (21, 0), (-19, 0)}\)
Related to This Article
More math articles
- Top 10 Tips to Create a HiSET Math Study Plan
- Full-Length 7th Grade STAAR Math Practice Test
- 5th Grade ACT Aspire Math FREE Sample Practice Questions
- How to Prepare for the SBAC Math Test?
- Top 10 3rd Grade ACT Aspire Math Practice Questions
- TSI Math Formulas
- Top 10 Tips You MUST Know to Retake the CLEP College Algebra
- How to Use Basic Techniques for Solving Trigonometric Equations
- How to Solve Exponential Growth and Decay Functions?
- The Role of Math in Developing Strategic Thinking for iGaming
What people say about "Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.