Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses
To write the equation of an ellipse, we need the parameters that will be explained in this article.

An Ellipse is a closed curve formed by a plane. There are two types of ellipses: Horizontal and Vertical
- If major axis of an ellipse is parallel to \(x\), its called horizontal ellipse.
- If major axis of an ellipse is parallel to \(y\), its called vertical ellipse.
Step by Step Guide to Find Equation of Ellipses
The standard form of the equation of an Ellipse is:
- Horizontal: \(\color{blue}{\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1}\)
- Vertical: \(\color{blue}{\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1}\)
The center is: \(\color{blue}{(h, k)}\)
The vertices are: \(\color{blue}{(h+a, k), (h-a, k)}\)
The foci are: \(\color{blue}{(h+c, k), (h-c, k)}\), where \(\color{blue}{c=\sqrt{a^2-b^2}}\)
The Values can be calculated according to the standard form of the equation of ellipses.

Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses – Example 1:
Find the center, vertices, and foci of this ellipse: \(\frac{(x-2)^2}{36}+\frac{(y+4)^2}{16}=1\)
Solution:
The standard form of the equation of an Ellipse is: \(\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1\)
Then, \((h=2, k=-4, a=6, b=4)\).
So, the center is \((2, -4)\).
The vertices are \((h+a, k), (h-a, k) →(8, 4), (-4, 4)\)
Evaluate \(c\): \(c=\sqrt{a^2-b^2}\) \(=\sqrt{36-16}=2\sqrt{5}\)
Then the foci are \((2+2\sqrt{5}, -4)\) and \((2-2\sqrt{5}, -4)\).
Exercises for Equation of Finding the Foci, Vertices, and Co– Vertices of Ellipses
Find the center, vertices, and foci of each ellipse.
- \(\color{blue}{9x^2+4y^2=1}\)
- \(\color{blue}{16x^2+25y^2=100}\)
- \(\color{blue}{25x^2+4y^2+100x-40y=400}\)
- \(\color{blue}{\frac{(x-1)^2}{9}+\frac{y^2}{5}=100}\)

- \(\color{blue}{Center: (0, 0), Vertices: (0,\frac{1}{2}), (0, -\frac{1}{2}), foci: (0, \frac{\sqrt{5}}{6}), (0, -\frac{\sqrt{5}}{6})}\)
- \(\color{blue}{Center: (0, 0), Vertices: (\frac{5}{2}, 0), (-\frac{5}{2}, 0), foci: (\frac{3}{2}, 0), (-\frac{3}{2}, 0)}\)
- \(\color{blue}{Center: (-2, 5), Vertices: (-2,5+5\sqrt{6}), (-2, 5-5\sqrt{6}), foci: (-2, 5+3\sqrt{14}), (-2, 5-3\sqrt{14})}\)
- \(\color{blue}{Center: (1, 0), Vertices: (31, 0), (-29, 0), foci: (21, 0), (-19, 0)}\)
Related to This Article
More math articles
- How to Distance Teach Math with a Drawing Pad?
- How to Simplify Ratios? (+FREE Worksheet!)
- Overview of ATI TEAS 7 Mathematics Test
- How to Interpret Remainders of Division Two-digit Numbers By One-digit Numbers
- How to Find the Number of Solutions to a System of Equations by Graphing
- 8th Grade OAA Math Worksheets: FREE & Printable
- Let’s Chat: How to Simplify the Steps to Solve Two-step Equations
- SSAT Middle-Level Math Worksheets: FREE & Printable
- 8th Grade SOL Math Worksheets: FREE & Printable
- Why So Many Students Struggle with Math Anxiety and How to Deal with It
What people say about "Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.