Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses
To write the equation of an ellipse, we need the parameters that will be explained in this article.
An Ellipse is a closed curve formed by a plane. There are two types of ellipses: Horizontal and Vertical
- If major axis of an ellipse is parallel to \(x\), its called horizontal ellipse.
- If major axis of an ellipse is parallel to \(y\), its called vertical ellipse.
Step by Step Guide to Find Equation of Ellipses
The standard form of the equation of an Ellipse is:
- Horizontal: \(\color{blue}{\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1}\)
- Vertical: \(\color{blue}{\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1}\)
The center is: \(\color{blue}{(h, k)}\)
The vertices are: \(\color{blue}{(h+a, k), (h-a, k)}\)
The foci are: \(\color{blue}{(h+c, k), (h-c, k)}\), where \(\color{blue}{c=\sqrt{a^2-b^2}}\)
The Values can be calculated according to the standard form of the equation of ellipses.

Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses – Example 1:
Find the center, vertices, and foci of this ellipse: \(\frac{(x-2)^2}{36}+\frac{(y+4)^2}{16}=1\)
Solution:
The standard form of the equation of an Ellipse is: \(\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1\)
Then, \((h=2, k=-4, a=6, b=4)\).
So, the center is \((2, -4)\).
The vertices are \((h+a, k), (h-a, k) →(8, 4), (-4, 4)\)
Evaluate \(c\): \(c=\sqrt{a^2-b^2}\) \(=\sqrt{36-16}=2\sqrt{5}\)
Then the foci are \((2+2\sqrt{5}, -4)\) and \((2-2\sqrt{5}, -4)\).
Exercises for Equation of Finding the Foci, Vertices, and Co– Vertices of Ellipses
Find the center, vertices, and foci of each ellipse.
- \(\color{blue}{9x^2+4y^2=1}\)
- \(\color{blue}{16x^2+25y^2=100}\)
- \(\color{blue}{25x^2+4y^2+100x-40y=400}\)
- \(\color{blue}{\frac{(x-1)^2}{9}+\frac{y^2}{5}=100}\)

- \(\color{blue}{Center: (0, 0), Vertices: (0,\frac{1}{2}), (0, -\frac{1}{2}), foci: (0, \frac{\sqrt{5}}{6}), (0, -\frac{\sqrt{5}}{6})}\)
- \(\color{blue}{Center: (0, 0), Vertices: (\frac{5}{2}, 0), (-\frac{5}{2}, 0), foci: (\frac{3}{2}, 0), (-\frac{3}{2}, 0)}\)
- \(\color{blue}{Center: (-2, 5), Vertices: (-2,5+5\sqrt{6}), (-2, 5-5\sqrt{6}), foci: (-2, 5+3\sqrt{14}), (-2, 5-3\sqrt{14})}\)
- \(\color{blue}{Center: (1, 0), Vertices: (31, 0), (-29, 0), foci: (21, 0), (-19, 0)}\)
Related to This Article
More math articles
- Top 10 Websites to Learn About Scholarships, Federal Aid, and Student Funding
- 10 Most Common 6th Grade Common Core Math Questions
- HiSET Math Practice Test Questions
- 5 Best Laptops for Math Teachers in 2026
- Overview of the PERT Mathematics Test
- CHSPE Math FREE Sample Practice Questions
- How to Solve Finite Geometric Series? (+FREE Worksheet!)
- The Ultimate SSAT Middle Level Math Formula Cheat Sheet
- 5th Grade STAAR Math Practice Test Questions
- 5th Grade TNReady Math Worksheets: FREE & Printable


















What people say about "Equation of Each Ellipse and Finding the Foci, Vertices, and Co– Vertices of Ellipses - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.