How to Construct and Interpret Scale Drawing

How to Construct and Interpret Scale Drawing

This article will learn how to construct and interpret Scale Drawing in a few simple steps.

Step by step guide to construct and interpret Scale Drawing

Since it is not always possible to draw the actual size of real objects on paper, we use scale drawings to show them on paper. A scale is a drawing that shows a real object in a way that its size is accurate and has been reduced or enlarged by a certain amount.

The scale is shown as the length in the drawing, matching length on the real thing, and a colon (“:”) between them.

The scale can actually be thought of as a fraction, which is usually the numerator of the fraction is one, and the denominator of that fraction is a whole number. The number at the denominator of the fraction is called the scale number.

The enlargement of the scaled image depends on the difference between the numbers on either side of the ratio or the difference between the numerator and the denominator of the fraction. So, for the 6:1 scale ratio, a 1inch drawing will be 10 inches in real life.

The larger the scale number, the smaller the size of the scaled image on the map.

Constructing and Interpreting Scale drawing Example 1:

Write the scale of the drawing is \(1cm:9ft\). find the actual length for a drawing length of \(11cm\).

Solution: write the scale of the drawing, \(1cm:9ft\), as \(\frac{1cm}{9ft}\)

Then write a proportion in which each ratio compares centimeters to feet.

 \(x\) represents the actual length. \(\frac{1}{9}=\frac{11}{x}→1(x)=99→x=99ft\)

Constructing and Interpreting Scale drawing Example 2:

The scale drawing of this building is \(1cm:380ft\). If the height of the building on paper is \(22cm\) inches, what is the height of the building in real life?

Solution: set up a proportion like this: \(\frac{height of drawing}{real height}=\frac{1}{380}\)

Do a cross-product by multiplying the numerator of one fraction by the denominator of the other fraction. We get: \((height of drawing) \times 400=(real height)\times 1\)

Since the height of drawing\(=22\), we get: \(=22 \times 380=real height \times 1→real height=8,360in\)

Constructing and Interpreting Scale drawing Example 3:

A particular map shows a scale of \(1:7000\). What is the actual distance if the map distance is \(14cm\)?

Solution: write the scale of the drawing, \(1:7000\), as \(\frac{1}{7000}\)

Then write a proportion in which each ratio compares centimeters to feet.

 \(x\) represents the actual length. \(\frac{1}{7000}=\frac{14}{x}→1(x)=98,000→x=98,000cm=980m\)

Constructing and Interpreting Scale drawing Example 4:

A rectangle yard has a length of \(45feet\) and a width of \(36feet\). Make a scale drawing using a scale of \(1inch: 9feet\).

Solution: Solve the proportion to find \(x\):

\(\frac{1in}{9ft}=\frac{x}{45ft}→\frac{1in\times 45ft}{9ft}=x\)

So, \(x=1in\times \frac{45ft}{9ft}=1in\times 5=5in\)

Exercises for Constructing and Interpreting Scale drawing

  1. Write the scale \(12mm\) to \(1m\) in ratio form.
  2. in a scale drawing, the width of a sofa is \(7cm\). The actual width of the sofa is \(140cm\). what is the scale of the drawing?
  3. A map has a scale of \(1cm:15mile\). If two cities are \(5\) apart on the map, how far are they actually apart?
  4. A particular map shows a scale of \(1cm:6km\). what would the map distance(in cm) be if the actual distance is \(36km\)?
  1. \(3mm:250mm\)
  2. \(20\)
  3. \(75mile\)
  4. \(6cm\)

Related to "How to Construct and Interpret Scale Drawing"

7 Best Headphones for Online Lessons
7 Best Headphones for Online Lessons
Top 20 Math Websites for Virtual Learning
Top 20 Math Websites for Virtual Learning
Math Skills You Need for the GED Math Test
Math Skills You Need for the GED Math Test
Top Ten Cameras for Classroom Recording
Top Ten Cameras for Classroom Recording
Top 6 Travel-Friendly Teaching Supplies for your Portable Classroom
Top 6 Travel-Friendly Teaching Supplies for your Portable Classroom
List Of the Best Middle School Math Supply for Learning
List Of the Best Middle School Math Supply for Learning
Top Math Websites for Virtual Learning
Top Math Websites for Virtual Learning
Best Blue Light Glasses for Teachers and Students
Best Blue Light Glasses for Teachers and Students
What Skills Do I Need for the ASVAB Math Subtests?
What Skills Do I Need for the ASVAB Math Subtests?
What Skills Do I Need for the SAT Math Test?
What Skills Do I Need for the SAT Math Test?

Leave a Reply

36% OFF

Download Instantly

X

How Does It Work?

Find Books

1. Find eBooks

Locate the eBook you wish to purchase by searching for the test or title.

add to cart

2. Add to Cart

Add the eBook to your cart.

checkout

3. Checkout

Complete the quick and easy checkout process.

download

4. Download

Immediately receive the download link and get the eBook in PDF format.

Why Buy eBook From Effortlessmath?

Save money

Save up to 70% compared to print

Instantly download

Instantly download and access your eBook

help environment

Help save the environment

Access

Lifetime access to your eBook

Test titles

Over 2,000 Test Prep titles available

Customers

Over 80,000 happy customers

Star

Over 10,000 reviews with an average rating of 4.5 out of 5

Support

24/7 support

Anywhere

Anytime, Anywhere Access

Find Your Test

Schools, tutoring centers, instructors, and parents can purchase Effortless Math eBooks individually or in bulk with a credit card or PayPal. Find out more…