Understanding the Integral Test for Series Convergence
The Integral Test is a powerful method for determining the convergence or divergence of an infinite series. It compares the series to an improper integral of a related function. For a series \(\sum a_n\), if \(f(x)\) is a continuous, positive, decreasing function where \(a_n = f(n)\), the convergence of the integral \(\ \int_1^\infty f(x) \, dx \) determines the behavior of the series. If the integral converges, so does the series; if the integral diverges, the series diverges as well. This test is particularly useful when the terms of the series resemble a simple function.

The Integral Test is used to determine the convergence or divergence of an infinite series by comparing it to an improper integral. If you have a series \(\sum a_n\), where \(a_n = f(n)\) and \(f(x)\) is a continuous, positive, and decreasing function for \(\geq 1\), you can apply the Integral Test. The test compares the series to the improper integral of \(f(x)\) over the interval \([1, \infty)\): \(\int_1^\infty f(x) \, dx\)
- If the integral converges, the series also converges.
- If the integral diverges, the series also diverges.
The test is particularly useful for series where the terms resemble well-known functions that are easy to integrate, such as exponential or polynomial terms. However, if the function doesn’t meet the criteria of being positive, continuous, and decreasing, the test cannot be applied.
Here are two more examples demonstrating the Integral Test:
1. Converging Example:
Series: \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n}\)
Function: \(f(x) = \frac{e^{-x}}{x}\)
Apply the Integral Test: Evaluate the integral: \(\int_1^\infty \frac{e^{-x}}{x} \, dx\)
This integral converges because the function \(\frac{e^{-x}}{x}\) decays rapidly for large \(x\). Therefore, the series \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n}\) converges.
2. Diverging Example:
Series: \(\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}\)
Function: \(f(x) = \frac{1}{x \ln(x)}\)
Apply the Integral Test: Evaluate the integral: \(\int_2^\infty \frac{1}{x \ln(x)} \, dx\)
This is a known divergent integral (it diverges logarithmically). Therefore, the series \(\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}\) diverges.
Related to This Article
More math articles
- GED Calculator Guide: Learn How To Use The TI-30XS
- How to Use Exponents to Write Powers of Ten?
- 8th Grade SBAC Math Practice Test Questions
- 3rd Grade SC Ready Math Worksheets: FREE & Printable
- Exterior Angle Theorem
- How to Unlock the Essentials: A Comprehensive Guide to Factors, GCD, Factorization, and LCM
- Block by Block: How to Complete Decimal Division Equations
- Tips You MUST Know to Retake the Praxis Core Math Test
- How to Identify Statistical Questions
- How to Find the x-Intercept of a Line?
What people say about "Understanding the Integral Test for Series Convergence - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.