How to Solve Prime Factorization with Exponents?
Prime factorization with exponents expresses a composite number as the product of its prime factors raised to various powers. This article will teach you how to work with prime factorization with exponents.

For example, the number \(60\) can be written as \(2^2 × 3 ×5\). This means that \(60\) is the product of \(2\) raised to the power of \(2\), multiplied by \(3\) raised to the power of \(1\) and multiplied by \(5\) raised to the power of \(1\). This is also known as the “expanded form” of prime factorization.
A step-by-step guide to prime factorization with exponents
Prime factorization with exponents expresses a composite number (a positive integer greater than \(1\) that is not a prime) as the product of prime numbers raised to specific powers. To make a prime factorization, you must break down a number into prime numbers that multiply by the original number.
A step-by-step guide to Prime Factorization with Exponents
- Start by dividing the composite number by the smallest prime number that divides it.
- Divide the result from step \(1\) by the smallest prime number that divides it.
- Repeat step \(2\) until the quotient is no longer divisible by any prime numbers.
- Write the prime factors and their exponents as a product of powers.
Example: Prime factorization of the number \(84\).
- \(84 ÷ 2 = 42\). The prime factor \(2\) is written as \(2^1\).
- \(42 ÷ 2 = 21\). The prime factor \(2\) is written as \(2^2\).
- \(21 ÷ 3 = 7\). The prime factor \(3\) is written as \(3^1\).
- \(7\) is a prime number, so the prime factorization of \(84\) is \(2^2 × 3^1 × 7^1\). Therefore \(84 = 2^2×3×7\).
Note: The prime factorization of a number is unique, which means that the order of the factors does not matter, but the exponents are important.
Prime Factorization with Exponents – Example 1
Write the prime factorization with exponents.
\(32=……\)
Solution:
Divide \(32\) by prime factors. The final quotient must be \(1\).
The prime factorization of \(32\) is \(4×8→4×4×2\).
Write down the repeated factor \((4)\) with exponent, \(4^2×2\).
Prime Factorization with Exponents – Example 2
Write the prime factorization with exponents.
\(135=……\)
Solution:
Divide \(135\) by prime factors. The final quotient must be \(1\).
The prime factorization of \(135\) is \(5×27→5×3×3×3\)
Write down the repeated factor \((3)\) with exponent, \(3^3×5\).
Exercises for Prime Factorization with Exponents
Write the prime factorization with exponents.
- \(\color{blue}{245}\)
- \(\color{blue}{126}\)
- \(\color{blue}{340}\)

- \(\color{blue}{5\cdot 7^2}\)
- \(\color{blue}{2\cdot 3^2\cdot7}\)
- \(\color{blue}{2^2\cdot 5\cdot 17}\)
Related to This Article
More math articles
- Properties of Addition
- Full-Length ATI TEAS 7 Math Practice Test
- How to Solve Rationalizing Imaginary Denominators? (+FREE Worksheet!)
- Top 10 Free Websites for SAT Math Preparation
- How to Get ALEKS Done Fast?
- How to Factor and Simplify Trigonometric Expressions
- How to Find Factors of Numbers?
- All You Need To Know About Parametric Equations And How To Differentiate Them
- How to Graph Quadratic Functions? (+FREE Worksheet!)
- Intelligent Math Puzzle – Challenge 87
What people say about "How to Solve Prime Factorization with Exponents? - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.