How to Find The Derivative of a Trigonometric Function
Using the limit formula to derive functions, we can uncover the general derivative form of trigonometric functions. This process requires an understanding of trigonometric identities. By applying these identities within the limit framework, it becomes possible to systematically determine the derivatives of various trigonometric functions, enhancing calculus applications.

Derivative of \( sin(x) \) :
\( \begin{align*}
\frac{d}{dx} \sin x &= \lim_{h \to 0} \frac{\sin(x + h) – \sin x}{h} \\
&= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h – \sin x}{h} \\
&= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h – 1}{h} + \cos x \cdot \frac{\sin h}{h}\right) \\
&= \sin x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \sin x \cdot 0 + \cos x \cdot 1 \\
&= \cos x
\end{align*}\)
So the derivative of \(sin (x)\) , is \(cos (x)\). Now, using chain rule, we can have:
\( sin(f(x))=cos (f(x))×f’ (x) \)
Derivative of \(cos (x) \):
Almost the same procedure can be used to find the derivative of \( cos (x) \) :
\(\begin{align*}
\frac{d}{dx} \cos x &= \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \\
&= \lim_{h \to 0} \frac{\cos x \cos h – \sin x \sin h – \cos x}{h} \\
&= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h – 1}{h} – \sin x \cdot \frac{\sin h}{h}\right) \\
&= \cos x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} – \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \cos x \cdot 0 – \sin x \cdot 1 \\
&= -\sin x
\end{align*}\)
Derivative of \(tan (x) \) and \(cot (x) \):
Now we could do the same thing for tangent and cotangent, but it would be easier to use quotient rule and find them using \( \tan x = \frac{\sin x}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \):
\( \frac{d}{dx} \tan x = \frac{d}{dx} \left( \frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \cos x – \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x \)
And:
\( \frac{d}{dx} \cot x = \frac{d}{dx} \left( \frac{\cos x}{\sin x} \right) = \frac{\sin x \cdot (-\sin x) – \cos x \cdot \cos x}{\sin^2 x} = \frac{-\sin^2 x – \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x \)
Related to This Article
More math articles
- How to Calculate Limits of Functions
- 5th Grade OST Math Practice Test Questions
- What is the Best Calculator for the ACT Math Test?
- What’s A Good ACT Score?
- How to Find Missing Angles of Triangles
- Top 10 8th Grade Common Core Math Practice Questions
- Full-Length TABE 11 & 12 Math Practice Test-Answers and Explanations
- Best Laptops for Online Math Teaching
- Using Distributive Property to Factor Numerical Expressions
- Top 10 Tips You MUST Know to Retake the ISEE Math
What people say about "How to Find The Derivative of a Trigonometric Function - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.