How to Find The Derivative of a Trigonometric Function
Using the limit formula to derive functions, we can uncover the general derivative form of trigonometric functions. This process requires an understanding of trigonometric identities. By applying these identities within the limit framework, it becomes possible to systematically determine the derivatives of various trigonometric functions, enhancing calculus applications.
[include_netrun_products_block from-products="product/6-south-carolina-sc-ready-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"] [include_netrun_products_block from-products="product/6-ohio-ost-grade-3-math-practice-tests/" product-list-class="bundle-products float-left" product-item-class="float-left" product-item-image-container-class="p-0 float-left" product-item-image-container-size="col-2" product-item-image-container-custom-style="" product-item-container-size="" product-item-add-to-cart-class="btn-accent btn-purchase-ajax" product-item-button-custom-url="{url}/?ajax-add-to-cart={id}" product-item-button-custom-url-if-not-salable="{productUrl} product-item-container-class="" product-item-element-order="image,title,purchase,price" product-item-title-size="" product-item-title-wrapper-size="col-10" product-item-title-tag="h3" product-item-title-class="mt-0" product-item-title-wrapper-class="float-left pr-0" product-item-price-size="" product-item-purchase-size="" product-item-purchase-wrapper-size="" product-item-price-wrapper-class="pr-0 float-left" product-item-price-wrapper-size="col-10" product-item-read-more-text="" product-item-add-to-cart-text="" product-item-add-to-cart-custom-attribute="title='Purchase this book with single click'" product-item-thumbnail-size="290-380" show-details="false" show-excerpt="false" paginate="false" lazy-load="true"]
Derivative of \( sin(x) \) :
\( \begin{align*}
\frac{d}{dx} \sin x &= \lim_{h \to 0} \frac{\sin(x + h) – \sin x}{h} \\
&= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h – \sin x}{h} \\
&= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h – 1}{h} + \cos x \cdot \frac{\sin h}{h}\right) \\
&= \sin x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \sin x \cdot 0 + \cos x \cdot 1 \\
&= \cos x
\end{align*}\)
So the derivative of \(sin (x)\), is \(cos (x)\). Now, using chain rule, we can have:
\( sin(f(x))=cos (f(x))×f’ (x) \)
Derivative of \(cos (x) \):
Almost the same procedure can be used to find the derivative of \( cos (x) \) :
\(\begin{align*}
\frac{d}{dx} \cos x &= \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \\
&= \lim_{h \to 0} \frac{\cos x \cos h – \sin x \sin h – \cos x}{h} \\
&= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h – 1}{h} – \sin x \cdot \frac{\sin h}{h}\right) \\
&= \cos x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} – \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \cos x \cdot 0 – \sin x \cdot 1 \\
&= -\sin x
\end{align*}\)
Derivative of \(tan (x) \) and \(cot (x) \):
Now we could do the same thing for tangent and cotangent, but it would be easier to use quotient rule and find them using \( \tan x = \frac{\sin x}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \):
\( \frac{d}{dx} \tan x = \frac{d}{dx} \left( \frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \cos x – \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x \)
And:
\( \frac{d}{dx} \cot x = \frac{d}{dx} \left( \frac{\cos x}{\sin x} \right) = \frac{\sin x \cdot (-\sin x) – \cos x \cdot \cos x}{\sin^2 x} = \frac{-\sin^2 x – \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x \)
Related to This Article
More math articles
- Full-Length 6th Grade MCAS Math Practice Test
- Top 5 Free Websites for Pre-Algebra Preparation
- How to Solve Radical Equations? (+FREE Worksheet!)
- How to Solve Inverse Trigonometric Functions?
- CLEP College Algebra Math Practice Test Questions
- FREE 6th Grade STAAR Math Practice Test
- Grade 3 Math: Word Problems: Addition and Subtraction
- 5th Grade LEAP Math Worksheets: FREE & Printable
- How to Solve Word Problems of Dividing Two-Digit Numbers By One-digit Numbers
- In-Depth Analysis of Vector Function Derivatives: Theory and Practical Applications


























What people say about "How to Find The Derivative of a Trigonometric Function - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.