How to Find The Derivative of a Trigonometric Function
Using the limit formula to derive functions, we can uncover the general derivative form of trigonometric functions. This process requires an understanding of trigonometric identities. By applying these identities within the limit framework, it becomes possible to systematically determine the derivatives of various trigonometric functions, enhancing calculus applications.

Derivative of \( sin(x) \) :
\( \begin{align*}
\frac{d}{dx} \sin x &= \lim_{h \to 0} \frac{\sin(x + h) – \sin x}{h} \\
&= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h – \sin x}{h} \\
&= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h – 1}{h} + \cos x \cdot \frac{\sin h}{h}\right) \\
&= \sin x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \sin x \cdot 0 + \cos x \cdot 1 \\
&= \cos x
\end{align*}\)
So the derivative of \(sin (x)\) , is \(cos (x)\). Now, using chain rule, we can have:
\( sin(f(x))=cos (f(x))×f’ (x) \)
Derivative of \(cos (x) \):
Almost the same procedure can be used to find the derivative of \( cos (x) \) :
\(\begin{align*}
\frac{d}{dx} \cos x &= \lim_{h \to 0} \frac{\cos(x + h) – \cos x}{h} \\
&= \lim_{h \to 0} \frac{\cos x \cos h – \sin x \sin h – \cos x}{h} \\
&= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h – 1}{h} – \sin x \cdot \frac{\sin h}{h}\right) \\
&= \cos x \cdot \lim_{h \to 0} \frac{\cos h – 1}{h} – \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\
&= \cos x \cdot 0 – \sin x \cdot 1 \\
&= -\sin x
\end{align*}\)
Derivative of \(tan (x) \) and \(cot (x) \):
Now we could do the same thing for tangent and cotangent, but it would be easier to use quotient rule and find them using \( \tan x = \frac{\sin x}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \):
\( \frac{d}{dx} \tan x = \frac{d}{dx} \left( \frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \cos x – \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x \)
And:
\( \frac{d}{dx} \cot x = \frac{d}{dx} \left( \frac{\cos x}{\sin x} \right) = \frac{\sin x \cdot (-\sin x) – \cos x \cdot \cos x}{\sin^2 x} = \frac{-\sin^2 x – \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\csc^2 x \)
Related to This Article
More math articles
- 8th Grade Georgia Milestones Assessment System Math Practice Test Questions
- 5 Best SAT Mаth Books fоr Studеntѕ Prераring fоr thе SAT Tеѕt
- Top 10 8th Grade SBAC Math Practice Questions
- Understanding Fractions Definition
- The Ultimate 7th Grade MAP Math Course (+FREE Worksheets)
- How to Multiply Matrix? (+FREE Worksheet!)
- What is the Relationship between Dilations and Angles in Geometry
- Algebra Puzzle – Challenge 39
- Top 10 Tips You MUST Know to Retake the TExES Math Test
- 6th Grade PSSA Math Practice Test Questions
What people say about "How to Find The Derivative of a Trigonometric Function - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.