Central Limit Theorem and Standard Error
Central Limit Theorem and Standard Error – Example 1:
Central Limit Theorem and Standard Error – Example 2:
Solution: First, find the mean of the given data.
Mean\(=\frac{4+8+12+16+20}{5}=12\)
Now, the standard deviation can be calculated as;
\(S=\frac{Summation\:of\:difference\:between\:each\:value\:of\:given\:data\:and\:the\:mean\:value}{Number\:of\:values}\)
\(S=\sqrt{\frac{\left(4-12\right)^2+\left(8-12\right)^2+\left(12-12\right)^2+\left(16-12\right)^2+\left(20-12\right)^2}{5}}\)
\(=5.65\)
So, use the \(SE\) formula: \(SE=\frac{σ}{\sqrt{n}}\)
\(SE=\frac{5.65}{\sqrt{5}}= 2.52\)
Related to This Article
More math articles
- How to Add and Subtract Mixed Time Units
- 3rd Grade ACT Aspire Math Worksheets: FREE & Printable
- SAT Math Subjесt Lеvеl 1 Calculator Tips and Hints
- Ratio, Proportion and Percentages Puzzle – Challenge 27
- Understanding Quadrants
- How to Prepare for the SBAC Math Test?
- The Ultimate 7th Grade NHSAS Math Course (+FREE Worksheets)
- FTCE General Knowledge Math- Test Day Tips
- How to Use a Venn Diagram to Classify Rational Numbers?
- A Comprehensive Collection of Free ATI TEAS 7 Math Practice Tests






































What people say about "Central Limit Theorem and Standard Error - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.