Central Limit Theorem and Standard Error
The central limit theorem states that the probability distribution of arithmetic means of different samples taken from the same population will be very similar to the normal distribution. In this step-by-step guide, you will learn more about the central limit theorem and standard error.

A step-by-step guide to central limit theorem and standard error
The standard error is one of the mathematical tools used to estimate the variable. Its abbreviation is \(SE\).
The standard error is the standard deviation of its sampling distribution. We can define it as an estimate of that standard deviation.
The formula is as follows:
\(\color{blue}{SE=\frac{σ}{\sqrt{n}}}\)
Where \(σ\) is the standard deviation and \(n\) is the sample size.
The central limit theorem states that regardless of the distribution of a random variable if large enough samples are drawn from the population, the sampling distribution of the mean for that random variable will approximate the normal distribution. This fact applies to samples greater than or equal to \(30\). In other words, the larger the number of samples taken, the more the sample plot looks like a normal distribution.
The formula of the central limit theorem is as follows:
\(\color{blue}{Z=\frac{x\:̅-μ}{\frac{σ}{\sqrt{n}}}}\)
Where \(x\:̅\) is the simple mean and \(μ\) is the population mean.
Central Limit Theorem and Standard Error – Example 1:
If the lamps produced in a factory have a lifespan with an average of \(43\) months and a standard deviation of \(5\) months. What is the probability of a sample of \(25\) bulbs with a lifespan of fewer than \(42\) months?
Solution: Use this formula to solve the problem: \(Z=\frac{x\:̅-μ}{\frac{σ}{\sqrt{n}}}\)
\(Z=\frac{42-43}{\frac{5}{\sqrt{25}}}\)
\(=-1\)
Therefore, by using the \(z\)-table, we have \(P\left(Z<-1\right)=15.871\%\)
Central Limit Theorem and Standard Error – Example 2:
Find the standard error of the given data: \(4, 8, 12, 16, 20\)
Solution: First, find the mean of the given data;
Mean\(=\frac{4+8+12+16+20}{5}=12\)
Now, the standard deviation can be calculated as;
\(S=\frac{Summation\:of\:difference\:between\:each\:value\:of\:given\:data\:and\:the\:mean\:value}{Number\:of\:values}\)
\(S=\sqrt{\frac{\left(4-12\right)^2+\left(8-12\right)^2+\left(12-12\right)^2+\left(16-12\right)^2+\left(20-12\right)^2}{5}}\)
\(=5.65\)
So, use the \(SE\) formula: \(SE=\frac{σ}{\sqrt{n}}\)
\(SE=\frac{5.65}{\sqrt{5}}= 2.52\)
Related to This Article
More math articles
- Distributing Decimals: How to Multiply with a 1-digit Whole Number
- Top 10 TSI Math Test-taking Tips
- Top 10 Tips to ACE the ASVAB Math
- Geometry Puzzle – Challenge 59
- Word Problems Involving Rates and Ratios
- 7th Grade AZMerit Math Worksheets: FREE & Printable
- Decimal Dynamics: How to Master the Art of Adding and Subtracting Decimals
- 10 Most Common 4th Grade MEAP Math Questions
- Best Laptops For Online Math Teachers
- 6th Grade MAAP Math Worksheets: FREE & Printable
What people say about "Central Limit Theorem and Standard Error - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.