Central Limit Theorem and Standard Error

Search in Central Limit Theorem and Standard Error articles.

Central Limit Theorem and Standard Error

Central Limit Theorem and Standard Error

Central Limit Theorem and Standard Error – Example 1: Central Limit Theorem and Standard Error – Example 2: Solution: First, find the mean of the given data. Mean\(=\frac{4+8+12+16+20}{5}=12\) Now, the standard deviation can be calculated as; \(S=\frac{Summation\:of\:difference\:between\:each\:value\:of\:given\:data\:and\:the\:mean\:value}{Number\:of\:values}\) \(S=\sqrt{\frac{\left(4-12\right)^2+\left(8-12\right)^2+\left(12-12\right)^2+\left(16-12\right)^2+\left(20-12\right)^2}{5}}\) \(=5.65\) So, use the \(SE\) formula: \(SE=\frac{σ}{\sqrt{n}}\) \(SE=\frac{5.65}{\sqrt{5}}= 2.52\)