Search in Central Limit Theorem articles.
Central Limit Theorem and Standard Error – Example 1: Central Limit Theorem and Standard Error – Example 2: Solution: First, find the mean of the given data. Mean\(=\frac{4+8+12+16+20}{5}=12\) Now, the standard deviation can be calculated as; \(S=\frac{Summation\:of\:difference\:between\:each\:value\:of\:given\:data\:and\:the\:mean\:value}{Number\:of\:values}\) \(S=\sqrt{\frac{\left(4-12\right)^2+\left(8-12\right)^2+\left(12-12\right)^2+\left(16-12\right)^2+\left(20-12\right)^2}{5}}\) \(=5.65\) So, use the \(SE\) formula: \(SE=\frac{σ}{\sqrt{n}}\) \(SE=\frac{5.65}{\sqrt{5}}= 2.52\)
Effortless Math services are waiting for you. login faster!
Password will be generated automatically and sent to your email.
After registration you can change your password if you want.