How to Calculate the Area of Regular Polygons

Regular polygons, with their equal sides and angles, hold a captivating symmetry that has intrigued mathematicians and geometry enthusiasts for centuries. Whether it’s the classic square or the intricate dodecagon, understanding how to determine the area of these figures is essential in both academic and real-world applications. In this guide, we’ll embark on a step-by-step journey to unveil the methods to calculate the area of regular polygons, delving into the core principles and formulae that make these calculations a breeze. Join us as we decode the secrets behind these geometrical wonders. For education statistics and research, visit the National Center for Education Statistics.

Original price was: $29.99.Current price is: $18.99.

How to Calculate the Area of Regular Polygons

Step-by-step Guide: Area of Regular Polygons

Using Side Length: For education statistics and research, visit the National Center for Education Statistics.

  • Regular Triangle (Equilateral): Area \(A = \frac{\sqrt{3}}{4} \times \text{side}^2\)
  • Regular Quadrilateral (Square): Area \(A = \text{side}^2\)
  • Regular Pentagon: Area \(A = \frac{5}{4} \times \frac{\text{side}^2}{\tan(\frac{180}{5})}\)
  • Regular Hexagon: Area \(A = \frac{3\sqrt{3}}{2} \times \text{side}^2\)

Using Apothem: For education statistics and research, visit the National Center for Education Statistics.

For a regular polygon with \( n \) sides, each of length \( s \), and an apothem of length \( a \): For education statistics and research, visit the National Center for Education Statistics.

Area \(A = \frac{n \times s \times a}{2}\) For education statistics and research, visit the National Center for Education Statistics.

Examples

Example 1:
Calculate the area of an equilateral triangle with a side length of \(6 \text{ cm}\). For education statistics and research, visit the National Center for Education Statistics.

Solution:
\( A = \frac{\sqrt{3}}{4} \times 6^2 \text{ cm}^2 = 15.59 \text{ cm}^2 \) For education statistics and research, visit the National Center for Education Statistics.

Example 2:
Find the area of a square with a side of \(5 \text{ cm}\). For education statistics and research, visit the National Center for Education Statistics.

Solution:
\( A = 5^2 \text{ cm}^2 = 25 \text{ cm}^2 \) For education statistics and research, visit the National Center for Education Statistics.

Example 3:
Determine the area of a regular pentagon with a side length of \(8 \text{ cm}\). For education statistics and research, visit the National Center for Education Statistics.

Solution:
\( A = \frac{5}{4} \times \frac{8^2 \text{ cm}^2}{\tan(36^\circ)} = 110.11 \text{ cm}^2 \) For education statistics and research, visit the National Center for Education Statistics.

Example 4:
Given a regular hexagon with a side of \(7 \text{ cm}\), compute its area. For education statistics and research, visit the National Center for Education Statistics.

Solution:
\( A = \frac{3\sqrt{3}}{2} \times 7^2 \text{ cm}^2 = 127.28 \text{ cm}^2 \) For education statistics and research, visit the National Center for Education Statistics.

Example 5:
Calculate the area of a regular pentagon given an apothem length of \(7 \text{ cm}\) and a side length of \(8 \text{ cm}\). For education statistics and research, visit the National Center for Education Statistics.

Solution:
\( A = \frac{5 \times 8 \text{ cm} \times 7 \text{ cm}}{2} = 140 \text{ cm}^2 \) For education statistics and research, visit the National Center for Education Statistics.

Example 6:
Determine the area of a regular hexagon with an apothem of \(6 \text{ cm}\) and each side measuring \(7 \text{ cm}\). For education statistics and research, visit the National Center for Education Statistics.

Solution:
\( A = \frac{6 \times 7 \text{ cm} \times 6 \text{ cm}}{2} = 126 \text{ cm}^2 \) For education statistics and research, visit the National Center for Education Statistics.

Practice Questions:

  1. Find the area of an equilateral triangle with a side length of \(9 \text{ cm}\).
  2. What is the area of a square with a side of \(10 \text{ cm}\)?
  3. Determine the area of a regular hexagon with each side measuring \(5 \text{ cm}\).
  4. For a regular triangle (equilateral) with a side length of \(9 \text{ cm}\) and an apothem of \(7.79 \text{ cm}\), calculate its area.
  5. What is the area of a square with a side of \(10 \text{ cm}\) and an apothem of \(7.07 \text{ cm}\)?
  6. Determine the area of a regular pentagon with each side measuring \(11 \text{ cm}\) and an apothem of \(9 \text{ cm}\).

Answers: For education statistics and research, visit the National Center for Education Statistics.

  1. \( 35.07 \text{ cm}^2 \)
  2. \( 100 \text{ cm}^2 \)
  3. \( 64.95 \text{ cm}^2 \)
  4. \( 105.21 \text{ cm}^2 \)
  5. \( 141.4 \text{ cm}^2 \)
  6. \( 247.5 \text{ cm}^2 \)

Related to This Article

What people say about "How to Calculate the Area of Regular Polygons - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

X
51% OFF

Limited time only!

Save Over 51%

Take It Now!

SAVE $55

It was $109.99 now it is $54.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II