How to Calculate the Area of Regular Polygons
Regular polygons, with their equal sides and angles, hold a captivating symmetry that has intrigued mathematicians and geometry enthusiasts for centuries. Whether it's the classic square or the intricate dodecagon, understanding how to determine the area of these figures is essential in both academic and real-world applications. In this guide, we'll embark on a step-by-step journey to unveil the methods to calculate the area of regular polygons, delving into the core principles and formulae that make these calculations a breeze. Join us as we decode the secrets behind these geometrical wonders.

Step-by-step Guide: Area of Regular Polygons
Using Side Length:
- Regular Triangle (Equilateral): Area \(A = \frac{\sqrt{3}}{4} \times \text{side}^2\)
- Regular Quadrilateral (Square): Area \(A = \text{side}^2\)
- Regular Pentagon: Area \(A = \frac{5}{4} \times \frac{\text{side}^2}{\tan(\frac{180}{5})}\)
- Regular Hexagon: Area \(A = \frac{3\sqrt{3}}{2} \times \text{side}^2\)
Using Apothem:
For a regular polygon with \( n \) sides, each of length \( s \), and an apothem of length \( a \):
Area \(A = \frac{n \times s \times a}{2}\)
Examples
Example 1:
Calculate the area of an equilateral triangle with a side length of \(6 \text{ cm}\).
Solution:
\( A = \frac{\sqrt{3}}{4} \times 6^2 \text{ cm}^2 = 15.59 \text{ cm}^2 \)
Example 2:
Find the area of a square with a side of \(5 \text{ cm}\).
Solution:
\( A = 5^2 \text{ cm}^2 = 25 \text{ cm}^2 \)
Example 3:
Determine the area of a regular pentagon with a side length of \(8 \text{ cm}\).
Solution:
\( A = \frac{5}{4} \times \frac{8^2 \text{ cm}^2}{\tan(36^\circ)} = 110.11 \text{ cm}^2 \)
Example 4:
Given a regular hexagon with a side of \(7 \text{ cm}\), compute its area.
Solution:
\( A = \frac{3\sqrt{3}}{2} \times 7^2 \text{ cm}^2 = 127.28 \text{ cm}^2 \)
Example 5:
Calculate the area of a regular pentagon given an apothem length of \(7 \text{ cm}\) and a side length of \(8 \text{ cm}\).
Solution:
\( A = \frac{5 \times 8 \text{ cm} \times 7 \text{ cm}}{2} = 140 \text{ cm}^2 \)
Example 6:
Determine the area of a regular hexagon with an apothem of \(6 \text{ cm}\) and each side measuring \(7 \text{ cm}\).
Solution:
\( A = \frac{6 \times 7 \text{ cm} \times 6 \text{ cm}}{2} = 126 \text{ cm}^2 \)
Practice Questions:
- Find the area of an equilateral triangle with a side length of \(9 \text{ cm}\).
- What is the area of a square with a side of \(10 \text{ cm}\)?
- Determine the area of a regular hexagon with each side measuring \(5 \text{ cm}\).
- For a regular triangle (equilateral) with a side length of \(9 \text{ cm}\) and an apothem of \(7.79 \text{ cm}\), calculate its area.
- What is the area of a square with a side of \(10 \text{ cm}\) and an apothem of \(7.07 \text{ cm}\)?
- Determine the area of a regular pentagon with each side measuring \(11 \text{ cm}\) and an apothem of \(9 \text{ cm}\).

Answers:
- \( 35.07 \text{ cm}^2 \)
- \( 100 \text{ cm}^2 \)
- \( 64.95 \text{ cm}^2 \)
- \( 105.21 \text{ cm}^2 \)
- \( 141.4 \text{ cm}^2 \)
- \( 247.5 \text{ cm}^2 \)
Related to This Article
More math articles
- Top 10 Tips to Create a HiSET Math Study Plan
- How to Estimate Negative and Positive Square Roots
- THEA Math Formulas
- Top 10 OAR Math Practice Questions
- 6th Grade TCAP Math Worksheets: FREE & Printable
- Top 10 8th Grade MCAS Math Practice Questions
- How to Multiply and Divide Fractions? (+FREE Worksheet!)
- How to Use Number Lines to Identify Equivalent Fractions?
- 5th Grade MEAP Math FREE Sample Practice Questions
- 3rd Grade MAP Math Worksheets: FREE & Printable
What people say about "How to Calculate the Area of Regular Polygons - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.