Derivative of Logarithmic Functions: A Hard Task Made Easy
Derivatives of logarithmic functions involve understanding how the logarithm's rate of change relates to its base and argument. For the natural logarithm \( ln(x) \), the derivative is \( \frac{1}{x} \). When dealing with more complex logarithmic expressions, the chain rule is often employed, especially if the logarithm's argument is a function itself, not just a simple variable.
The formulas to find the derivative of logarithmic functions:
Logarithm of \( x \) to the base of \( a \) :
The derivative of \( \log_a x \) : \( \left(\log_a x\right)’ = \frac{1}{x \ln a} \)
Example:
\( \text{Given function: } \log_2 x \)
\( \text{Derivative: } \left(\log_2 x\right)’ = \frac{1}{x \ln 2} \)
Logarithm of \( f(x) \) to the base of \( a \):
The derivative of \( \log_a f(x) \) : \( \left(\log_a f(x)\right)’ = \frac{f'(x)}{f(x) \ln a} \)
Example:
\( \text{Given function: } \log_3 (x^2 + 1) \)
\( \text{Derivative: } \left(\log_3 (x^2 + 1)\right)’ = \frac{2x}{(x^2 + 1) \ln 3} \)
Natural logarithm of \( x \):
The derivative of \( \ln x \) : \( \left(\ln x\right)’ = \frac{1}{x} \)
Example:
\( \text{Given function: } \ln (3x) \)
\( \text{Derivative: } \left(\ln (3x)\right)’ = \frac{1}{3x} \cdot 3 = \frac{1}{x} \)
Natural logarithm of \( f(X) \):
The derivative of \( \ln f(x) \) : \( \left(\ln f(x)\right)’ = \frac{f'(x)}{f(x)} \)
Example:
\( \text{Given function: } \ln (x^3 + 2x) \)
\( \text{Derivative: } \left(\ln (x^3 + 2x)\right)’ = \frac{3x^2 + 2}{x^3 + 2x} \)
Examples:
Let’s consider a complex example:
\( \text{Find the derivative of } h(x) = \ln(x) \cdot \log_2(x^2 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x} \)
\( g(x) = \log_2(x^2 + 1) \rightarrow g'(x) = \frac{2x}{(x^2 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{x} \cdot \log_2(x^2 + 1) + \ln(x) \cdot \frac{2x}{(x^2 + 1) \ln 2} \)
Here is another example involving radicals:
\( \text{Find the derivative of } h(x) = \sqrt{\ln x} \cdot \log_2(x^3 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \sqrt{\ln x} \rightarrow f'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \)
\( g(x) = \log_2(x^3 + 1) \rightarrow g'(x) = \frac{3x^2}{(x^3 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \cdot \log_2(x^3 + 1) + \sqrt{\ln x} \cdot \frac{3x^2}{(x^3 + 1) \ln 2} \)
Derivative of exponential functions
Here are the formula for finding the derivative of exponential functions.
Real number \( a \) to the power of \( x \): \( a^x \)
\( \left(a^x\right)’ = a^x \ln a \)
Example:
\( \text{Given function: } 5^{2x + 3} \)
\( \text{Derivative: } \left(5^{2x + 3}\right)’ = 5^{2x + 3} \ln 5 \cdot 2 \)
Real number \( a \) to the power of \( f(x) \): \( a^x \)
\( \left(a^{f(x)}\right)’ = a^{f(x)} \ln a \cdot f'(x) \)
Example:
\( \text{Given function: } 4^{\sin x} \)
\( \text{Derivative: } \left(4^{\sin x}\right)’ = 4^{\sin x} \ln 4 \cdot \cos x \)
\( e \) to the power of \( x \): \( e^x \)
\( \left(e^x\right)’ = e^x \)
Example:
\( \text{Given function: } e^{3x – 2} \)
\( \text{Derivative: } \left(e^{3x – 2}\right)’ = e^{3x – 2} \cdot 3 \)
\( e \) to the power of \( f(x) \): \( e^{f(x)} \)
\( \left(e^{f(x)}\right)’ = e^{f(x)} \cdot f'(x) \)
Example:
\( \text{Given function: } e^{\sqrt{x}} \)
\( \text{Derivative: } \left(e^{\sqrt{x}}\right)’ = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \)
Here is one more example:
\( \text{Find the derivative of } h(x) = e^{2x} \cdot \ln(x^2) \)
1. Apply the product rule
\( h'(x) = e^{2x} \cdot (\ln(x^2))’ + (e^{2x})’ \cdot \ln(x^2) \)
2. Define the derivatives
\( (\ln(x^2))’ = \frac{2}{x} \)
\( (e^{2x})’ = e^{2x} \cdot 2 \)
3. Combine using the product rule
\( h'(x) = e^{2x} \cdot \frac{2}{x} + e^{2x} \cdot 2 \cdot \ln(x^2) \)
Related to This Article
More math articles
- Best Desktop Computers For Online Math Teachers
- Overview of the SHSAT Mathematics Test
- How to Unravel the Essential Properties of Rectangles
- The 10 Best Whiteboards for Online Tutoring
- How to Solve Logarithmic Equations? (+FREE Worksheet!)
- What’s The Best Laptop For Online Math Teachers?
- How to Understand Dot Product and Cross-Product
- How to Estimate Limit Values from the Graph?
- How to Get 800 on the SAT Math?
- Top Proven Strategies To Increase Your SAT Math Score




























What people say about "Derivative of Logarithmic Functions: A Hard Task Made Easy - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.