Derivative of Logarithmic Functions: A Hard Task Made Easy
Derivatives of logarithmic functions involve understanding how the logarithm's rate of change relates to its base and argument. For the natural logarithm \( ln(x) \), the derivative is \( \frac{1}{x} \). When dealing with more complex logarithmic expressions, the chain rule is often employed, especially if the logarithm's argument is a function itself, not just a simple variable.
The formulas to find the derivative of logarithmic functions:
Logarithm of \( x \) to the base of \( a \) :
The derivative of \( \log_a x \) : \( \left(\log_a x\right)’ = \frac{1}{x \ln a} \)
Example:
\( \text{Given function: } \log_2 x \)
\( \text{Derivative: } \left(\log_2 x\right)’ = \frac{1}{x \ln 2} \)
Logarithm of \( f(x) \) to the base of \( a \):
The derivative of \( \log_a f(x) \) : \( \left(\log_a f(x)\right)’ = \frac{f'(x)}{f(x) \ln a} \)
Example:
\( \text{Given function: } \log_3 (x^2 + 1) \)
\( \text{Derivative: } \left(\log_3 (x^2 + 1)\right)’ = \frac{2x}{(x^2 + 1) \ln 3} \)
Natural logarithm of \( x \):
The derivative of \( \ln x \) : \( \left(\ln x\right)’ = \frac{1}{x} \)
Example:
\( \text{Given function: } \ln (3x) \)
\( \text{Derivative: } \left(\ln (3x)\right)’ = \frac{1}{3x} \cdot 3 = \frac{1}{x} \)
Natural logarithm of \( f(X) \):
The derivative of \( \ln f(x) \) : \( \left(\ln f(x)\right)’ = \frac{f'(x)}{f(x)} \)
Example:
\( \text{Given function: } \ln (x^3 + 2x) \)
\( \text{Derivative: } \left(\ln (x^3 + 2x)\right)’ = \frac{3x^2 + 2}{x^3 + 2x} \)
Examples:
Let’s consider a complex example:
\( \text{Find the derivative of } h(x) = \ln(x) \cdot \log_2(x^2 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x} \)
\( g(x) = \log_2(x^2 + 1) \rightarrow g'(x) = \frac{2x}{(x^2 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{x} \cdot \log_2(x^2 + 1) + \ln(x) \cdot \frac{2x}{(x^2 + 1) \ln 2} \)
Here is another example involving radicals:
\( \text{Find the derivative of } h(x) = \sqrt{\ln x} \cdot \log_2(x^3 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \sqrt{\ln x} \rightarrow f'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \)
\( g(x) = \log_2(x^3 + 1) \rightarrow g'(x) = \frac{3x^2}{(x^3 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \cdot \log_2(x^3 + 1) + \sqrt{\ln x} \cdot \frac{3x^2}{(x^3 + 1) \ln 2} \)
Derivative of exponential functions
Here are the formula for finding the derivative of exponential functions.
Real number \( a \) to the power of \( x \): \( a^x \)
\( \left(a^x\right)’ = a^x \ln a \)
Example:
\( \text{Given function: } 5^{2x + 3} \)
\( \text{Derivative: } \left(5^{2x + 3}\right)’ = 5^{2x + 3} \ln 5 \cdot 2 \)
Real number \( a \) to the power of \( f(x) \): \( a^x \)
\( \left(a^{f(x)}\right)’ = a^{f(x)} \ln a \cdot f'(x) \)
Example:
\( \text{Given function: } 4^{\sin x} \)
\( \text{Derivative: } \left(4^{\sin x}\right)’ = 4^{\sin x} \ln 4 \cdot \cos x \)
\( e \) to the power of \( x \): \( e^x \)
\( \left(e^x\right)’ = e^x \)
Example:
\( \text{Given function: } e^{3x – 2} \)
\( \text{Derivative: } \left(e^{3x – 2}\right)’ = e^{3x – 2} \cdot 3 \)
\( e \) to the power of \( f(x) \): \( e^{f(x)} \)
\( \left(e^{f(x)}\right)’ = e^{f(x)} \cdot f'(x) \)
Example:
\( \text{Given function: } e^{\sqrt{x}} \)
\( \text{Derivative: } \left(e^{\sqrt{x}}\right)’ = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \)
Here is one more example:
\( \text{Find the derivative of } h(x) = e^{2x} \cdot \ln(x^2) \)
1. Apply the product rule
\( h'(x) = e^{2x} \cdot (\ln(x^2))’ + (e^{2x})’ \cdot \ln(x^2) \)
2. Define the derivatives
\( (\ln(x^2))’ = \frac{2}{x} \)
\( (e^{2x})’ = e^{2x} \cdot 2 \)
3. Combine using the product rule
\( h'(x) = e^{2x} \cdot \frac{2}{x} + e^{2x} \cdot 2 \cdot \ln(x^2) \)
Related to This Article
More math articles
- How to Interpret Categorical Data
- The Ultimate KAP Algebra 1 Course (+FREE Worksheets)
- Online Math Tutoring Tools: The Top 5 tools
- How to Evaluate Trigonometric Function? (+FREE Worksheet!)
- Grade 3 Math: Measuring Length
- What Kind of Math Is on the CBEST Test?
- How Is the SHSAT Test Scored?
- 5 Best SAT Mаth Books fоr Studеntѕ Prераring fоr thе SAT Tеѕt
- How to Use Memory Tricks to Memorize Math Formulas?
- Convert Between Fractions and Decimals




























What people say about "Derivative of Logarithmic Functions: A Hard Task Made Easy - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.