Derivative of Logarithmic Functions: A Hard Task Made Easy

Derivatives of logarithmic functions involve understanding how the logarithm's rate of change relates to its base and argument. For the natural logarithm \( ln(x) \), the derivative is  \( \frac{1}{x} \). When dealing with more complex logarithmic expressions, the chain rule is often employed, especially if the logarithm's argument is a function itself, not just a simple variable.

Derivative of Logarithmic Functions: A Hard Task Made Easy

The formulas to find the derivative of logarithmic functions:

Logarithm of \( x \)  to the base of \( a \) :

The derivative of \( \log_a x \) : \( \left(\log_a x\right)’ = \frac{1}{x \ln a} \)

Example:

\( \text{Given function: } \log_2 x \)

\( \text{Derivative: } \left(\log_2 x\right)’ = \frac{1}{x \ln 2} \)

Logarithm of \( f(x) \) to the base of \( a \):

The derivative of \( \log_a f(x) \) : \( \left(\log_a f(x)\right)’ = \frac{f'(x)}{f(x) \ln a} \)

Example:

\( \text{Given function: } \log_3 (x^2 + 1) \)

\( \text{Derivative: } \left(\log_3 (x^2 + 1)\right)’ = \frac{2x}{(x^2 + 1) \ln 3} \)

Natural logarithm of \( x \):

The derivative of \( \ln x \) : \( \left(\ln x\right)’ = \frac{1}{x} \)

Example:

\( \text{Given function: } \ln (3x) \)

\( \text{Derivative: } \left(\ln (3x)\right)’ = \frac{1}{3x} \cdot 3 = \frac{1}{x} \)

Original price was: $109.99.Current price is: $54.99.

Natural logarithm of \( f(X) \):

The derivative of \( \ln f(x) \) : \( \left(\ln f(x)\right)’ = \frac{f'(x)}{f(x)} \)

Example:

\( \text{Given function: } \ln (x^3 + 2x) \)

\( \text{Derivative: } \left(\ln (x^3 + 2x)\right)’ = \frac{3x^2 + 2}{x^3 + 2x} \)

Examples:

Let’s consider a complex example:

\( \text{Find the derivative of } h(x) = \ln(x) \cdot \log_2(x^2 + 1) \)

1. Apply the product rule

\( h'(x) = f'(x)g(x) + f(x)g'(x) \)

2. Define \( f'(x) \) and \( g'(x) \)

\( f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x} \)

\( g(x) = \log_2(x^2 + 1) \rightarrow g'(x) = \frac{2x}{(x^2 + 1) \ln 2} \)

3. Combine using the product rule

\( h'(x) = \frac{1}{x} \cdot \log_2(x^2 + 1) + \ln(x) \cdot \frac{2x}{(x^2 + 1) \ln 2} \)

Here is another example involving radicals:

\( \text{Find the derivative of } h(x) = \sqrt{\ln x} \cdot \log_2(x^3 + 1) \)

1. Apply the product rule

\( h'(x) = f'(x)g(x) + f(x)g'(x) \)

2. Define \( f'(x) \) and \( g'(x) \)

\( f(x) = \sqrt{\ln x} \rightarrow f'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \)

\( g(x) = \log_2(x^3 + 1) \rightarrow g'(x) = \frac{3x^2}{(x^3 + 1) \ln 2} \)

3. Combine using the product rule

Original price was: $109.99.Current price is: $54.99.

\( h'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \cdot \log_2(x^3 + 1) + \sqrt{\ln x} \cdot \frac{3x^2}{(x^3 + 1) \ln 2} \)

Derivative of exponential functions

Here are the formula for finding the derivative of exponential functions.

Real number \( a \) to the power of \( x \): \( a^x \)

\( \left(a^x\right)’ = a^x \ln a \)

Example:

\( \text{Given function: } 5^{2x + 3} \)

\( \text{Derivative: } \left(5^{2x + 3}\right)’ = 5^{2x + 3} \ln 5 \cdot 2 \)

Real number \( a \) to the power of \( f(x) \):  \( a^x \)

\( \left(a^{f(x)}\right)’ = a^{f(x)} \ln a \cdot f'(x) \)

Example:

\( \text{Given function: } 4^{\sin x} \)

\( \text{Derivative: } \left(4^{\sin x}\right)’ = 4^{\sin x} \ln 4 \cdot \cos x \)

\( e \) to the power of \( x \): \( e^x \)

\( \left(e^x\right)’ = e^x \)

Example:

\( \text{Given function: } e^{3x – 2} \)

\( \text{Derivative: } \left(e^{3x – 2}\right)’ = e^{3x – 2} \cdot 3 \)

\( e \) to the power of \( f(x) \): \( e^{f(x)} \)

\( \left(e^{f(x)}\right)’ = e^{f(x)} \cdot f'(x) \)

Example:

\( \text{Given function: } e^{\sqrt{x}} \)

\( \text{Derivative: } \left(e^{\sqrt{x}}\right)’ = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \)

Here is one more example:

\( \text{Find the derivative of } h(x) = e^{2x} \cdot \ln(x^2) \)

1. Apply the product rule

\( h'(x) = e^{2x} \cdot (\ln(x^2))’ + (e^{2x})’ \cdot \ln(x^2) \)

2. Define the derivatives

\( (\ln(x^2))’ = \frac{2}{x} \)

\( (e^{2x})’ = e^{2x} \cdot 2 \)

3. Combine using the product rule

\( h'(x) = e^{2x} \cdot \frac{2}{x} + e^{2x} \cdot 2 \cdot \ln(x^2) \)

Original price was: $114.99.Current price is: $54.99.

Related to This Article

What people say about "Derivative of Logarithmic Functions: A Hard Task Made Easy - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply

X
51% OFF

Limited time only!

Save Over 51%

Take It Now!

SAVE $55

It was $109.99 now it is $54.99

The Ultimate Algebra Bundle: From Pre-Algebra to Algebra II