Derivative of Logarithmic Functions: A Hard Task Made Easy
Derivatives of logarithmic functions involve understanding how the logarithm's rate of change relates to its base and argument. For the natural logarithm \( ln(x) \), the derivative is \( \frac{1}{x} \). When dealing with more complex logarithmic expressions, the chain rule is often employed, especially if the logarithm's argument is a function itself, not just a simple variable.
The formulas to find the derivative of logarithmic functions:
Logarithm of \( x \) to the base of \( a \) :
The derivative of \( \log_a x \) : \( \left(\log_a x\right)’ = \frac{1}{x \ln a} \)
Example:
\( \text{Given function: } \log_2 x \)
\( \text{Derivative: } \left(\log_2 x\right)’ = \frac{1}{x \ln 2} \)
Logarithm of \( f(x) \) to the base of \( a \):
The derivative of \( \log_a f(x) \) : \( \left(\log_a f(x)\right)’ = \frac{f'(x)}{f(x) \ln a} \)
Example:
\( \text{Given function: } \log_3 (x^2 + 1) \)
\( \text{Derivative: } \left(\log_3 (x^2 + 1)\right)’ = \frac{2x}{(x^2 + 1) \ln 3} \)
Natural logarithm of \( x \):
The derivative of \( \ln x \) : \( \left(\ln x\right)’ = \frac{1}{x} \)
Example:
\( \text{Given function: } \ln (3x) \)
\( \text{Derivative: } \left(\ln (3x)\right)’ = \frac{1}{3x} \cdot 3 = \frac{1}{x} \)
Natural logarithm of \( f(X) \):
The derivative of \( \ln f(x) \) : \( \left(\ln f(x)\right)’ = \frac{f'(x)}{f(x)} \)
Example:
\( \text{Given function: } \ln (x^3 + 2x) \)
\( \text{Derivative: } \left(\ln (x^3 + 2x)\right)’ = \frac{3x^2 + 2}{x^3 + 2x} \)
Examples:
Let’s consider a complex example:
\( \text{Find the derivative of } h(x) = \ln(x) \cdot \log_2(x^2 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x} \)
\( g(x) = \log_2(x^2 + 1) \rightarrow g'(x) = \frac{2x}{(x^2 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{x} \cdot \log_2(x^2 + 1) + \ln(x) \cdot \frac{2x}{(x^2 + 1) \ln 2} \)
Here is another example involving radicals:
\( \text{Find the derivative of } h(x) = \sqrt{\ln x} \cdot \log_2(x^3 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \sqrt{\ln x} \rightarrow f'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \)
\( g(x) = \log_2(x^3 + 1) \rightarrow g'(x) = \frac{3x^2}{(x^3 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \cdot \log_2(x^3 + 1) + \sqrt{\ln x} \cdot \frac{3x^2}{(x^3 + 1) \ln 2} \)
Derivative of exponential functions
Here are the formula for finding the derivative of exponential functions.
Real number \( a \) to the power of \( x \): \( a^x \)
\( \left(a^x\right)’ = a^x \ln a \)
Example:
\( \text{Given function: } 5^{2x + 3} \)
\( \text{Derivative: } \left(5^{2x + 3}\right)’ = 5^{2x + 3} \ln 5 \cdot 2 \)
Real number \( a \) to the power of \( f(x) \): \( a^x \)
\( \left(a^{f(x)}\right)’ = a^{f(x)} \ln a \cdot f'(x) \)
Example:
\( \text{Given function: } 4^{\sin x} \)
\( \text{Derivative: } \left(4^{\sin x}\right)’ = 4^{\sin x} \ln 4 \cdot \cos x \)
\( e \) to the power of \( x \): \( e^x \)
\( \left(e^x\right)’ = e^x \)
Example:
\( \text{Given function: } e^{3x – 2} \)
\( \text{Derivative: } \left(e^{3x – 2}\right)’ = e^{3x – 2} \cdot 3 \)
\( e \) to the power of \( f(x) \): \( e^{f(x)} \)
\( \left(e^{f(x)}\right)’ = e^{f(x)} \cdot f'(x) \)
Example:
\( \text{Given function: } e^{\sqrt{x}} \)
\( \text{Derivative: } \left(e^{\sqrt{x}}\right)’ = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \)
Here is one more example:
\( \text{Find the derivative of } h(x) = e^{2x} \cdot \ln(x^2) \)
1. Apply the product rule
\( h'(x) = e^{2x} \cdot (\ln(x^2))’ + (e^{2x})’ \cdot \ln(x^2) \)
2. Define the derivatives
\( (\ln(x^2))’ = \frac{2}{x} \)
\( (e^{2x})’ = e^{2x} \cdot 2 \)
3. Combine using the product rule
\( h'(x) = e^{2x} \cdot \frac{2}{x} + e^{2x} \cdot 2 \cdot \ln(x^2) \)
Related to This Article
More math articles
- Geometry Puzzle – Challenge 66
- How to Find Distance of Two Points? (+FREE Worksheet!)
- Word Problems Involving Volume of Cubes and Rectangular Prisms
- Number Properties Puzzle – Challenge 9
- How to Solve Word Problems of Volume of Cubes and Rectangular Prisms
- FREE 4th Grade PSSA Math Practice Test
- A Comprehensive Guide to the Properties of Rhombuses
- Mastering the Lagrange Error Bound for Reliable Function Approximations
- 4th Grade STAAR Math Practice Test Questions
- FREE 4th Grade MEAP Math Practice Test




























What people say about "Derivative of Logarithmic Functions: A Hard Task Made Easy - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.