Derivative of Logarithmic Functions: A Hard Task Made Easy
Derivatives of logarithmic functions involve understanding how the logarithm's rate of change relates to its base and argument. For the natural logarithm \( ln(x) \), the derivative is \( \frac{1}{x} \). When dealing with more complex logarithmic expressions, the chain rule is often employed, especially if the logarithm's argument is a function itself, not just a simple variable.
The formulas to find the derivative of logarithmic functions:
Logarithm of \( x \) to the base of \( a \) :
The derivative of \( \log_a x \) : \( \left(\log_a x\right)’ = \frac{1}{x \ln a} \)
Example:
\( \text{Given function: } \log_2 x \)
\( \text{Derivative: } \left(\log_2 x\right)’ = \frac{1}{x \ln 2} \)
Logarithm of \( f(x) \) to the base of \( a \):
The derivative of \( \log_a f(x) \) : \( \left(\log_a f(x)\right)’ = \frac{f'(x)}{f(x) \ln a} \)
Example:
\( \text{Given function: } \log_3 (x^2 + 1) \)
\( \text{Derivative: } \left(\log_3 (x^2 + 1)\right)’ = \frac{2x}{(x^2 + 1) \ln 3} \)
Natural logarithm of \( x \):
The derivative of \( \ln x \) : \( \left(\ln x\right)’ = \frac{1}{x} \)
Example:
\( \text{Given function: } \ln (3x) \)
\( \text{Derivative: } \left(\ln (3x)\right)’ = \frac{1}{3x} \cdot 3 = \frac{1}{x} \)
Natural logarithm of \( f(X) \):
The derivative of \( \ln f(x) \) : \( \left(\ln f(x)\right)’ = \frac{f'(x)}{f(x)} \)
Example:
\( \text{Given function: } \ln (x^3 + 2x) \)
\( \text{Derivative: } \left(\ln (x^3 + 2x)\right)’ = \frac{3x^2 + 2}{x^3 + 2x} \)
Examples:
Let’s consider a complex example:
\( \text{Find the derivative of } h(x) = \ln(x) \cdot \log_2(x^2 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x} \)
\( g(x) = \log_2(x^2 + 1) \rightarrow g'(x) = \frac{2x}{(x^2 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{x} \cdot \log_2(x^2 + 1) + \ln(x) \cdot \frac{2x}{(x^2 + 1) \ln 2} \)
Here is another example involving radicals:
\( \text{Find the derivative of } h(x) = \sqrt{\ln x} \cdot \log_2(x^3 + 1) \)
1. Apply the product rule
\( h'(x) = f'(x)g(x) + f(x)g'(x) \)
2. Define \( f'(x) \) and \( g'(x) \)
\( f(x) = \sqrt{\ln x} \rightarrow f'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \)
\( g(x) = \log_2(x^3 + 1) \rightarrow g'(x) = \frac{3x^2}{(x^3 + 1) \ln 2} \)
3. Combine using the product rule
\( h'(x) = \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} \cdot \log_2(x^3 + 1) + \sqrt{\ln x} \cdot \frac{3x^2}{(x^3 + 1) \ln 2} \)
Derivative of exponential functions
Here are the formula for finding the derivative of exponential functions.
Real number \( a \) to the power of \( x \): \( a^x \)
\( \left(a^x\right)’ = a^x \ln a \)
Example:
\( \text{Given function: } 5^{2x + 3} \)
\( \text{Derivative: } \left(5^{2x + 3}\right)’ = 5^{2x + 3} \ln 5 \cdot 2 \)
Real number \( a \) to the power of \( f(x) \): \( a^x \)
\( \left(a^{f(x)}\right)’ = a^{f(x)} \ln a \cdot f'(x) \)
Example:
\( \text{Given function: } 4^{\sin x} \)
\( \text{Derivative: } \left(4^{\sin x}\right)’ = 4^{\sin x} \ln 4 \cdot \cos x \)
\( e \) to the power of \( x \): \( e^x \)
\( \left(e^x\right)’ = e^x \)
Example:
\( \text{Given function: } e^{3x – 2} \)
\( \text{Derivative: } \left(e^{3x – 2}\right)’ = e^{3x – 2} \cdot 3 \)
\( e \) to the power of \( f(x) \): \( e^{f(x)} \)
\( \left(e^{f(x)}\right)’ = e^{f(x)} \cdot f'(x) \)
Example:
\( \text{Given function: } e^{\sqrt{x}} \)
\( \text{Derivative: } \left(e^{\sqrt{x}}\right)’ = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \)
Here is one more example:
\( \text{Find the derivative of } h(x) = e^{2x} \cdot \ln(x^2) \)
1. Apply the product rule
\( h'(x) = e^{2x} \cdot (\ln(x^2))’ + (e^{2x})’ \cdot \ln(x^2) \)
2. Define the derivatives
\( (\ln(x^2))’ = \frac{2}{x} \)
\( (e^{2x})’ = e^{2x} \cdot 2 \)
3. Combine using the product rule
\( h'(x) = e^{2x} \cdot \frac{2}{x} + e^{2x} \cdot 2 \cdot \ln(x^2) \)
Related to This Article
More math articles
- How to Calculate the Volume of Cubes and Prisms
- The Butterfly Effect in Mathematics: Small Changes, Big Impact
- 3rd Grade MEAP Math FREE Sample Practice Questions
- PERT Math – Test Day Tips
- 7th Grade Georgia Milestones Assessment System Math FREE Sample Practice Questions
- How to Solve Multi-Step Equations? (+FREE Worksheet!)
- Number Properties Puzzle – Challenge 4
- FREE 5th Grade NYSE Math Practice Test
- Top 10 Free Websites for Praxis Core Math Preparation
- Solving the Unsolvable: How to Master Systems of Non-linear Equations with Elimination
















What people say about "Derivative of Logarithmic Functions: A Hard Task Made Easy - Effortless Math: We Help Students Learn to LOVE Mathematics"?
No one replied yet.