The Ultimate Step by Step Guide

to Acing Algebra I

Complete coverage of all Algebra I concepts

(1) Dymamic design and easy-to-follow activities
(A) A fun, interactive and concrete learning process
(d) 2 practice tests with detailed answers
for

Algebra I FOR BEGINNERS

The Ultimate Step by Step Guide to Preparing for the Algebra I Test

Answers and Solutions

By
Reza Nazari

... So Much More Online!

Effortless Math Online Algebra I Center offers a complete study program, including the following:
\checkmark Step-by-step instructions on how to prepare for the Algebra I test
\checkmark Numerous Algebra I worksheets to help you measure your math skills
\checkmark Complete list of Algebra I formulas
\checkmark Video lessons for all Algebra I topics
\checkmark Full-length Algebra I practice tests

$\sqrt{ }$ And much more...

No Registration Required.

Visit EffortlessMath.com/Algebra1 to find your online Algebra I resources.

Contents

Chapter 1: Fundamental and Building Blocks 1
Practices 2
Answers 8
Answers and Explanations 10
Chapter 2: Exponents and Variables 21
Practices 22
Answers 24
Answers and Explanations 25
Chapter 3: Expressions and Equations 31
Practices 32
Answers 34
Answers and Explanations 35
Chapter 4: Linear Functions 41
Practices 42
Answers 48
Answers and Explanations 51
Chapter 5: Inequalities and System of Equations 59
Practices 60
Answers 66
Answers and Explanations 69
Chapter 6: Quadratic 77
Practices 78
Answers 82
Answers and Explanations 84
Chapter 7: Polynomials 89
Practices 90
Answers 94
Answers and Explanations 96
Chapter 8: Relations and Functions 103
Practices 104
Answers 108
Answers and Explanations 110

EffortlessMath.com
Chapter 9: Radical Expressions 115
Practices 116
Answers 118
Answers and Explanations 119
Chapter 10: Rational Expressions 123
Practices 124
Answers 126
Answers and Explanations 127
Chapter 11: Statistics and Probabilities 131
Practices 132
Answers 136
Answers and Explanations 137
Chapter 12: Direct and Inverse Variation 141
Practices 142
Answers 144
Answers and Explanations 145
Chapter 13: Number Sequences 147
Practices 148
Answers 150
Answers and Explanations 151

Chapter

Fundamental and Building Blocks

Math topics in this chapter:

च Adding and Subtracting Integers
Multiplying and Dividing Integers
\square Translate a Phrase into an Algebraic Statement
\square Order of Operations
\square Integers and Absolute Value
\square Proportional Ratios
V Similarity and Ratios
『 Percent Problems
『 Percent of Increase and Decrease
\square Discount, Tax, and Tip
\square Simple Interest
\square The Distributive Property
\square Approximating Irrational Numbers

Practices

Find each sum or difference.

	$-9+16=$		$(-11)+(-5+6)=$
	$-18-6=$		$(-3)+(9-16)=$
1)	$-24+10=$	10)	$(-8)-(13+4)=$
2)	$30+(-5)=$	11)	$(-7+9)-39=$
3)	$15+(-3)=$	12)	$(-30+6)-14=$
5)	$(-13)+(-4)=$	14)	$(-5+9)+(-3+7)=$
6)	$25+(3-10)=$	15)	$(8-19)-(-4+12)=$
7)	$12-(-6+9)=$	16)	$(-9+2)-(6-7)=$
$8)$ $9)$	$5-(-2+7)=$	17)	$(-12-5)-(-4-14)=$

19)
20) | $3 \times(-6)=$ |
| :--- |
| 21) |$(-32) \div 4=$
21) $(-5) \times 4=$
22)
23)

$(25) \div(-5)=$
25) $(-72) \div 8=$
26) $(-2) \times(-6) \times 5=$
27)
$(-2) \times 3 \times(-7)=$
$(-1) \times(-3) \times(-5)=$
$(-2) \times(-3) \times(-6)=$
28)
29)
30)
31)
32)
33)
34)
35)
36)
$(-3-2) \times(-9+7)=$
$(-15+31) \div(-2)=$
$(-64) \div(-16+8)=$

Write an algebraic expression for each phrase.

37) 11 multiplied by $x=$ \qquad
38) 18 divided by $x=$ \qquad
39) The square of 15 . \qquad
40) The difference between ninety-six and y. \qquad
41) The difference between x and 32 is 15 . \qquad

2 Evaluate each expression.

42) $3+(2 \times 5)=$
43) $(5 \times 4)-7=$
44) $(-9 \times 2)+6=$
45) $(7 \times 3)-(-5)=$
46) $(-8)+(2 \times 7)=$
47) $(9-6)+(3 \times 4)=$
48) $(-19+5)+(6 \times 2)=$
49) $(32 \div 4)+(1-13)=$
50) $(-36 \div 6)-(12+3)=$
51) $(-16+5)-(54 \div 9)=$
52) $(-20+4)-(35 \div 5)=$
53) $(42 \div 7)+(2 \times 3)=$
54) $(28 \div 4)+(2 \times 6)=$
55) $2[(3 \times 3)-(4 \times 5)]=$
56) $3[(2 \times 8)+(4 \times 3)]=$
57) $2[(9 \times 3)-(6 \times 4)]=$
58) $4[(4 \times 8) \div(4 \times 4)]=$
59) $-5[(10 \times 8) \div(5 \times 8)]=$

Find the answers.

60) $|-5|+|7-10|=$
61) $\frac{|-100|}{10} \times \frac{|-36|}{6}=$
62) $|-4+6|+|-2|=$
63) $|4 \times(-2)| \times \frac{|-27|}{3}=$
64) $|-9|+|1-9|=$
65) $|-7|-|8-12|=$
$72)|-3 \times 2| \times \frac{|-40|}{8}=$
66) $|9-11|+|8-15|=$
67) $\frac{|-54|}{6}-|-3 \times 7|=$
68) $|-7+10|-|-8+3|=$
69) $|-12+6|-|3-9|=$
70) $5+|2-6|+|3-4|=$
71) $-4+|2-6|+|1-9|=$
72) $\frac{|-72|}{8}+|-7 \times 5|=$
73) $\frac{|-121|}{11}+|-6 \times 4|=$
74) $\frac{|-42|}{7} \times \frac{|-64|}{8}=$
75) $\frac{|(-6) \times(-3)|}{9} \times \frac{|2 \times(-20)|}{5}=$
$77) \frac{|(-3) \times(-8)|}{6} \times \frac{|9 \times(-4)|}{12}=$

Solve each proportion.

78) $\frac{3}{2}=\frac{9}{x} \rightarrow x=$
79) $\frac{4}{18}=\frac{2}{x} \rightarrow x=$
80) $\frac{7}{2}=\frac{x}{4} \rightarrow x=$ \qquad 90) $\frac{6}{16}=\frac{3}{x} \rightarrow x=$
81) $\frac{1}{3}=\frac{2}{x} \rightarrow x=$ \qquad 91) $\frac{2}{5}=\frac{x}{20} \rightarrow x=$ \qquad
82) $\frac{1}{4}=\frac{5}{x} \rightarrow x=$ \qquad 92) $\frac{28}{8}=\frac{x}{2} \rightarrow x=$ \qquad
83) $\frac{9}{6}=\frac{x}{2} \rightarrow x=$ \qquad
84) $\frac{3}{5}=\frac{x}{15} \rightarrow x=$ \qquad
85) $\frac{3}{6}=\frac{5}{x} \rightarrow x=$ \qquad 94) $\frac{2}{7}=\frac{x}{14} \rightarrow x=$ \qquad
86) $\frac{7}{x}=\frac{2}{6} \rightarrow x=$ \qquad 95) $\frac{x}{18}=\frac{3}{2} \rightarrow x=$ \qquad
87) $\frac{2}{x}=\frac{4}{10} \rightarrow x=$ \qquad 96) $\frac{x}{24}=\frac{2}{6} \rightarrow x=$ \qquad
88) $\frac{3}{2}=\frac{x}{8} \rightarrow x=$ \qquad
89) $\frac{5}{x}=\frac{4}{20} \rightarrow x=$ \qquad
90) $\frac{x}{6}=\frac{5}{3} \rightarrow x=$ \qquad 98) $\frac{10}{x}=\frac{20}{80} \rightarrow x=$
91) $\frac{3}{9}=\frac{5}{x} \rightarrow x=$ \qquad 99) $\frac{90}{6}=\frac{x}{2} \rightarrow x=$ \qquad

Solve each problem.

100) Two rectangles are similar. The first is 8 feet wide and 32 feet long. The second is 12 feet wide. What is the length of the second rectangle?
\qquad
101) Two rectangles are similar. One is 4.6 meters by 7 meters. The longer side of the second rectangle is 28 meters. What is the other side of the second rectangle? \qquad

Solve each problem.

102) What is 15% of 60 ? \qquad
103) What is 55% of 800 ? \qquad
104) What is 22% of 120 ? \qquad
105) What is 18% of 40 ? \qquad
106) 90 is what percent of 200 ? __ $\%$
107) 30 is what percent of 150 ? ___ \%
108) 14 is what percent of 250 ? ___ $\%$
109) 60 is what percent of 300 ? \qquad \%
110) 30 is 120 percent of what number? \qquad
111) 120 is 20 percent of what number? \qquad
112) 15 is 5 percent of what number? \qquad
113) 22 is 20% of what number? \qquad

2 Solve each problem.

114) Bob got a raise, and his hourly wage increased from $\$ 15$ to $\$ 21$. What is the percent increase?
115) The price of a pair of shoes increases from $\$ 32$ to $\$ 36$. What is the percentage increase?
116) At a coffee shop, the price of a cup of coffee increased from $\$ 1.35$ to $\$ 1.62$. What is the percent increase in the cost of the coffee?
117) TRGBA $\$ 45$ shirt now selling for $\$ 36$ is discounted by what percent?
118) Joe scored 30 out of 35 marks in Algebra, 20 out of 30 marks in science, and 58 out of 70 marks in mathematics. In which subject his percentage of marks is best?
119) Emma purchased a computer for $\$ 420$. The computer is regularly priced at $\$ 480$. What was the percent discount Emma received on the computer?

6
120) A chemical solution contains 15% alcohol. If there is 54 ml of alcohol, what is the volume of the solution?

Find the selling price of each item.

121) Original price of a computer: $\$ 600$. Tax: 8%, Selling price: $\$$ \qquad
122) Original price of a laptop: $\$ 450$. Tax: 10%, Selling price: $\$$ \qquad
123) Nicolas hired a moving company. The company charged $\$ 500$ for its services, and Nicolas gave the movers a 14% tip. How much does Nicolas's tip the movers? \$ \qquad
124) Mason has lunch at a restaurant and the cost of his meal is $\$ 40$. Mason wants to leave a 20% tip. What is Mason's total bill, including tip? \$ \qquad

Determine the simple interest for the following loans.

125) $\$ 1,000$ at 5% for 4 years. \$ \qquad
126) $\$ 400$ at 3% for 5 years. $\$$ \qquad
127) $\$ 240$ at 4% for 3 years. \$_
128) $\$ 500$ at 4.5% for 6 years. $\$$ \qquad

Solve.

129) A new car, valued at $\$ 20,000$, depreciates at 8% per year. What is the value of the car one year after purchase? \$ \qquad
130) Sara put $\$ 7,000$ into an investment yielding 3% annual simple interest; she left the money in for five years. How much interest does Sara get at the end of those five years? \$ \qquad

Use the distributive property to simplify each expression.
131) $2(6+x)=$ \qquad 136) $(-1)(-9+x)=$ \qquad
132) $5(3-2 x)=$ \qquad 137) $(-6)(3 x-2)=$ \qquad
133) $7(1-5 x)=$ \qquad 138) $(-x+12)(-4)=$
134) $(3-4 x) 7=$ \qquad 139) $(-2)(1-6 x)=$ \qquad
135) $6(2-3 x)=$ \qquad 140) $(-5 x-3)(-8)=$ \qquad

Find the approximation of each.

141) $\sqrt{44} \approx$ \qquad 143) $\sqrt{27} \approx$ \qquad
142) $\sqrt{72} \approx$ \qquad
143) $\sqrt{92} \approx$ \qquad
2. Find the approximation of each and locate them approximately on a number line diagram.
145) $\sqrt{7} \approx$ \qquad 146) $\sqrt{30} \approx$

Answers

1) 7
2) -24
3) -14
4) 25
5) 12
6) -17
7) 18
8) 9
9) 0
10) -10
11) -10
12) -25
13) -37
14) -38
15) 8
16) -19
17) -6
18) 1
19) -18
20) -8
21) -20
22) -5
23) -9
24) 60
25) 42
26) -15
27) -36
28) 45
29) -11
30) -9
31) 60
32) 12
33) 3
34) 10
35) -8
36) 8
37) $11 x$
38) $\frac{18}{x}$
39) 15^{2}
40) $96-y$
41) $x-32=15$
42) 13
43) 13
44) -12
45) 26
46) 6
47) 15
48) -2
49) -4
50) -21
51) -17
52) -23
53) 12
54) 19
55) -22
56) 84
57) 6
58) 8
59) -10
60) 8
61) 4
62) 17
63) 3
64) 9
65) -2
66) 0
67) 10
68) 8
69) 48
70) 60
71) 72
72) 30
73) -12
74) 44
75) 35
76) 16
77) 12
78) 6
79) 14
80) 6
81) 20
82) 3
83) 10
84) 21
85) 5
86) 12
87) 10
88) 15
89) 9
90) 8
91) 8
92) 7
93) 9
94) 4
95) 27
96) 8
97) 25
98) 40
99) 30
100) 48 feet
101) 18.4 meters
102) 9
103) 440
104) 26.4
105) 7.2

106) 45%	120	360 ml	134)	$-28 x+21$
107) 20%	121)	\$648.00	135)	$-18 x+12$
108) 5.6%	122	\$495.00	136)	$-x+9$
109) 20%	123	\$70.00	137)	$-18 x+12$
110) 25	124	\$48.00	138)	$4 x-48$
111) 600	125	\$200.00	139)	$12 x-2$
112) 300	126	\$60.00	140)	$40 x+24$
113) 110	127)	\$28.80	141)	6.6
114) 40%	128	\$135.00	142)	8.5
115) 12.5%	129)	\$18,400	143)	5.2
116) 20%	130)	\$1,050	144)	9.6
117) 20%	131)	$2 x+12$		
118) Algebra	132	$-10 x+15$		
119) 12.5%	133	$-35 x+7$		
145) 2.6		146)		

Answers and Explanations

1. Begin with -9 , then move 16 units to the right on the number line (because you're adding a positive number). You'll end up at 7 . So, $-9+16=7$.
2. Start at -18 , and move 6 units to the left on the number line (because you're subtracting a positive number). You'll land on -24 . Thus, $-18-6=-24$.
3. From -24 , shift 10 units to the right (adding a positive). You reach -14 . So, $-24+10=-14$.
4. At 30, move 5 units left (adding a negative is like subtracting). You get to 25 . Answer: $30+(-5)=25$.
5. Starting at 15, go left 3 units. The result is 12 . Thus, $15+(-3)=12$.
6. Begin at -13 and move 4 units left. This brings you to -17 . Answer:
$(-13)+(-4)=-17$.
7. First solve inside the parenthesis. 3 minus 10 is -7 . Then, 25 plus -7 is 18 . So, $25+(3-10)=18$.
8. Inside the parenthesis: $-6+9=3$. Now, 12 minus 3 is 9 . The result is:
$12-(-6+9)=9$.
9. Inside the parenthesis: $-2+7=5$. Now, 5 minus 5 is 0 . Answer:
$5-(-2+7)=0$.
10. Within the parenthesis: $-5+6=1$. Then, -11 plus 1 is -10 . Thus, $(-11)+(-5+6)=-10$.
11. Inside the parenthesis: 9 minus 16 is -7 . -3 plus -7 is -10 . Answer:
$(-3)+(9-16)=-10$.
12. In the parenthesis: $13+4=17$. Now, -8 minus 17 is -25 . The result is: $(-8)-(13+4)=-25$.
13. Within parenthesis: $-7+9=2.2$ minus 39 gives -37 . So,
$(-7+9)-39=-37$.
14. In the parenthesis: $-30+6=-24$. Then, -24 minus 14 equals -38 . Answer: $(-30+6)-14=-38$.
15. First set: $-5+9=4$. Second set: $-3+7=4$. Adding the results: $4+4=8$. So, $(-5+9)+(-3+7)=8$.
16. First set: 8 minus 19 is -11 . Second set: $-4+12=8$. Now, -11 minus 8 gives -19 . The final answer is: $(8-19)-(-4+12)=-19$.
17. First set: $-9+2=-7$. Second set: 6 minus 7 is $-1 .-7$ minus -1 is -6 . Answer: $(-9+2)-(6-7)=-6$.
18. First set: -12 minus 5 equals -17 . Second set: -4 minus 14 is -18 . Then, -17 minus -18 equals 1 . Thus, $(-12-5)-(-4-14)=1$.
19. When multiplying a positive by a negative, the result is negative. 3 times 6 is 18 . So, the answer is -18 .
20. Dividing a negative by a positive yield a negative result. 32 divided by 4 is 8 . So, the answer is -8 .
21. A negative multiplied by a positive gives a negative. 5 times 4 is 20 .

The result is -20 .
22. When you divide a positive by a negative, the quotient is negative. 25 divided by 5 is 5 , so the answer is -5 .
23. A negative number divided by a positive result in a negative quotient.

72 divided by 8 is 9 , so the answer is -9 .
24. Two negatives multiplied together give a positive. So, -2 times -6 is 12 . Then 12 times 5 is 60 .
25. A negative times a positive is negative. -2 times 3 is -6 . Now, a negative time a negative is positive, so -6 times -7 is 42 .
26. The first two negatives yield a positive result, 3. But multiplying that by the next negative, 5 , gives -15 . So, $(-1) \times(-3) \times(-5)=-15$.
27. Multiplying the first two negatives results in 6 , a positive. Multiplying this by the next negative number, 6 , gives -36 .
28. The sum inside the parenthesis is -9 . Multiplying -9 by -5 (remember, negative times negative is positive) yields 45 .
29. Inside the parenthesis, the result is 1.1 times -11 is -11 . Answer: -11 .
30. The operation inside the parenthesis yields 1 . Then, -9 times 1 results in -9 .
31.The sum inside the parenthesis is -10 . Multiplying -10 by -6 results in 60 .
32.The first set gives -4 , and the second set gives -3 . Multiplying these two negatives yields 12 . Thus, $(-7+3) \times(-9+6)=12$.
33. Inside the parenthesis, the result is -5 . Dividing -15 by -5 yields 3 .
34. The first set results in -5 , and the second gives -2 . Multiplying these yields 10. Answer: 10.
35. The operation inside the parenthesis yields 16 . Dividing 16 by -2 results in -8.
36. Inside the parenthesis, the result is -8 . Dividing -64 by -8 yields 8 .
37. An algebraic expression for " 11 multiplied by x " can be written as $11 x$. This means you take the number 11 and multiply it by the variable x, which can represent any real number.
38. An algebraic expression for "18 divided by x " can be written as $\frac{18}{x}$. This means you take the number 18 and divide it by the variable x.
39. The square of a number means you multiply the number by itself. So, the square of 15 is written as 15^{2} or 15×15.
40. To find the difference between two numbers, you subtract the second number from the first. In this case, the difference between ninety-six (96) and the variable y can be expressed as $96-y$.
41. To express the difference between two quantities when the first quantity is x and the second quantity is 32 , and the difference is 15 , you can write the algebraic equation as: $x-32=15$.
42. Here we'll do multiplication first: $2 \times 5=10$. Then, add that result to 3 :
$3+10=13$.
43. Start with the multiplication: $5 \times 4=20$. Subtract 7 from that result:
$20-7=13$.
44. Multiplication: $-9 \times 2=-18$. Add 6: $-18+6=-12$.
45. Multiply first: $7 \times 3=21$. Subtracting a negative is the same as adding its positive counterpart. So, $21+5=26$.
46. Multiply: $2 \times 7=14$. Add -8 : $14+(-8)=6$.
47. Subtract: $9-6=3$. Multiply: $3 \times 4=12$. Add: $3+12=15$.
48. First, calculate within the parentheses. $(-19+5)=-14 .(6 \times 2)=12$. Finally, combine the two results: $-14+12=-2$.
49. Divide 32 by $4: 32 \div 4=8$. Subtract 13 from $1: 1-13=-12$. Sum the results: $8+(-12)=-4$.
50. Divide -36 by $6:-36 \div 6=-6$. Add 12 and $3: 12+3=15$. Subtract 15 from $-6:-6-15=-21$.
51. Combine -16 and $5:-16+5=-11$. Divide 54 by $9: 54 \div 9=6$. Subtract 6 from -11 : $-11-6=-17$.
52. Add 4 to $-20:-20+4=-16$. Divide 35 by $5: 35 \div 5=7$. Subtract 7 from $-16:-16-7=-23$.
53. Divide 42 by 7: $42 \div 7=6$. Multiply 2 by $3: 2 \times 3=6$. Combine the results: $6+6=12$.
54. Divide 28 by $4: 28 \div 4=7$. Multiply 2 by $6: 2 \times 6=12$. Sum up: $7+12=19$.
55. Multiply 3 by $3: 3 \times 3=9$. Multiply 4 by $5: 4 \times 5=20$. Subtract the second result from the first: $9-20=-11$. Multiply the result by $2: 2 \times(-11)=-22$.
56. Multiply 2 by 8 : $2 \times 8=16$. Multiply 4 by $3: 4 \times 3=12$. Add the two results: $16+12=28$. Multiply the sum by $3: 3 \times 28=84$.
57. Multiply 9 by $3: 9 \times 3=27$. Multiply 6 by $4: 6 \times 4=24$. Subtract the second result from the first: $27-24=3$. Multiply the result by $2: 2 \times 3=6$.
58. Multiply 4 by 8 : $4 \times 8=32$. Multiply 4 by 4 : $4 \times 4=16$. Divide the first result by the second: $32 \div 16=2$. Multiply by $4: 4 \times 2=8$.
59. Multiply 10 by 8 : $10 \times 8=80$. Multiply 5 by $8: 5 \times 8=40$. Divide the first result by the second: $80 \div 40=2$. Multiply the quotient by $-5:-5 \times 2=-10$.
60. Absolute values change negatives into positives. $\mathrm{So},|-5|$ becomes 5.7 minus 10 is -3 , and its absolute value $|7-10|$ becomes 3 . So, the sum is $5+3=8$.
61. Combining -4 and 6 gives 2 . Its absolute value remains 2 . The absolute value of -2 is 2 . Adding them together: $2+2=4$.
62. The absolute value of -9 is 9 . Subtracting 9 from 1 gives -8 , which turns into 8. The total is $9+8=17$.
63. The absolute value of -7 is 7 . For 8 minus 12 , we get -4 , which becomes 4 . Subtracting, we get: $7-4=3$.
64. 9 minus 11 results in -2 , turning into 2 . Then, 8 minus 15 is -7 , which becomes 7. Adding up: $2+7=9$.
65. Combining -7 and 10 gives 3 . Combining -8 and 3 results in -5 , which becomes 5. Subtracting: $3-5=-2$.
66. -12 plus 6 is -6 , turning into 6.3 minus 9 results in -6 , which becomes 6 . Subtracting: 6-6=0.
67. Subtracting 6 from 2 gives -4 , which becomes 4.3 minus 4 is -1 , which becomes 1. Adding with $5: 5+4+1=10$.
68. Subtracting 6 from 2 gives -4 , which becomes 4.1 minus 9 is -8 , which becomes 8 . Adding with $-4:-4+4+8=8$.
69. $|-42|$ becomes 42 , and $|-64|$ becomes 64 . Dividing by their respective numbers: $(42 \div 7) \times(64 \div 8)=6 \times 8=48$.
70. $|-100|$ is 100 , and $|-36|$ is 36 . After division, we get:
$(100 \div 10) \times(36 \div 6)=10 \times 6=60$.
71. 4 multiplied by -2 is -8 , which becomes 8 . $|-27|$ is 27 . So, the result is: $8 \times(27 \div 3)=8 \times 9=72$.
72. -3 times 2 is -6 , which becomes $6 .|-40|$ is 40 . Multiplying after dividing: $6 \times(40 \div 8)=6 \times 5=30$.
73. $|-54|$ is $54 .-3$ times 7 is -21 , which becomes 21 . The result is:
$(54 \div 6)-21=9-21=-12$.
74. $|-72|$ is $72 .-7$ times 5 is -35 , which becomes 35 . Adding after division: $(72 \div 8)+35=9+35=44$.
75. $|-121|$ is 121 . -6 times 4 is -24 , which becomes 24 . The result is:
$(121 \div 11)+24=11+24=35$.
76. -6 times -3 is 18.2 times -20 is -40 , which becomes 40. Multiplying after dividing: $(18 \div 9) \times(40 \div 5)=2 \times 8=16$.
77. -3 times -8 is 24.9 times -4 is -36 , which becomes 36 . The result is:
$(24 \div 6) \times(36 \div 12)=4 \times 3=12$.
78. To solve for x, cross-multiply: $3 x=9 \times 2$. This gives $3 x=18$, so $x=6$.
79. Cross-multiplication gives: $7 \times 4=2 x$. This results in $28=2 x$, so $x=14$.
80. Multiplying the terms diagonally: $x=2 \times 3$. This results in $x=6$.
81. By cross-multiplication: $x=5 \times 4$, which means $x=20$.
82. Using the same principle, $x=\frac{9 \times 2}{6}$, so $x=3$.
83. Cross-multiplying gives $x=\frac{5 \times 6}{3}$. This results in $x=10$.
84. From the cross-multiplication: $7 \times 6=2 x$, which means $x=\frac{42}{2}=21$.
85. By cross-multiplication: $2 \times 10=4 x$. This gives $x=\frac{20}{4}=5$.
86. Cross-multiplying: $3 \times 8=2 x$. Thus, $x=\frac{24}{2}=12$.
87. Using the same approach: $5 \times 6=3 x$. This means $x=\frac{30}{3}=10$.
88. Cross-multiplying: $3 x=5 \times 9$, which gives $x=\frac{45}{3}=15$.
89. By cross-multiplying: $4 x=2 \times 18$. Thus, $x=\frac{36}{4}=9$.
90. By cross-multiplication: $6 x=3 \times 16$. This means $x=\frac{48}{6}=8$.
91. Using cross-multiplication: $2 \times 20=5 x$. This results in $x=\frac{40}{5}=8$.
92. Cross-multiplying: $28 \times 2=8 x$, which means $x=\frac{56}{8}=7$.
93. By the same principle: $3 \times 15=5 x$. This gives $x=\frac{45}{5}=9$.
94. By cross-multiplication: $2 \times 14=7 x$, resulting in $x=\frac{28}{7}=4$.
95. Cross-multiplying: $2 x=3 \times 18$, which gives $x=\frac{54}{2}=27$.
96. Using cross-multiplication: $6 x=2 \times 24$. This means $x=\frac{48}{6}=8$.
97. By cross-multiplying: $5 \times 20=4 x$. Thus, $x=\frac{100}{4}=25$.
98. Cross-multiplying: $10 \times 80=20 x$. This results in $x=\frac{800}{20}=40$.
99. Using the same approach: $90 \times 2=6 x$. This means $x=\frac{180}{6}=30$.
100. Similar figures have proportional sides. Let's use ratios to find the length of the second rectangle. $\frac{8}{12}=\frac{32}{l}$. Cross-multiplying: $8 \times l=12 \times 32 \rightarrow 8 l=384 \rightarrow$ $l=48 \mathrm{ft}$. So, the length of the second rectangle is 48 feet.
101. Using the ratio of the lengths: $\frac{7}{28}=\frac{4.6}{w}$. Cross-multiplying: $7 \times w=28 \times 4.6 \rightarrow$ $7 w=128.8 \rightarrow w=18.4 \mathrm{~m}$. The other side (width) of the second rectangle is 18.4 meters.
102. Using the formula Part $=$ Percent \times Base, where the base is 60 and the percent is 15% (or 0.15 in decimal form): Part $=0.15 \times 60=9$. So, 15% of 60 is 9 .
103. Given the base of 800 and a percent of 55% (0.55 in decimal form):

Part $=0.55 \times 800=440.55 \%$ of 800 is 440 .
104. For a base of 120 and 22% : Part $=0.22 \times 120=26.4$. Thus, 22% of 120 is 26.4.
105. With a base of 40 and 18% : Part $=0.18 \times 40=7.2 .18 \%$ of 40 amounts to 7.2.
106. Using the formula Percent $=$ Part \div Base: Percent $=90 \div 200=0.45$ or 45%. So, 90 is 45% of 200 .
107. Applying the same formula: Percent $=30 \div 150=0.20$ or 20%.

30 represents 20% of 150 .
108. Calculating the ratio: Percent $=14 \div 250=0.056$ or 5.6%. 14 is 5.6% of 250 .
109. Using the division: Percent $=60 \div 300=0.20$ or 20%. 60 corresponds to 20% of 300 .
110. Using the formula Base $=$ Part \div Percent (where percent is 1.20):

Base $=30 \div 1.20=25$. So, 30 is 120% of 25 .
111. For a 20% ratio (0.20 in decimals): Base $=120 \div 0.20=600,120$ constitutes 20% of 600.
112. Applying the formula for 5% (0.05 in decimals): Base $=15 \div 0.05=300,15$ stands as 5% of 300 .
113. With a 20% ratio: Base $=22 \div 0.20=110,22$ represents 20% of 110 .
114. To find the percentage of change, use this formula:
percent of change $=\frac{\text { new number-original number }}{\text { original number }} \times 100=\frac{21-15}{15} \times 100=40 \% . \quad$ So, Bob's wage experienced a 40% increase.
115. Use the percent of change formula: percent of change $=$ $\frac{\text { new number-original number }}{\text { original number }} \times 100=\frac{36-32}{32} \times 100=12.5 \%$.
116. Apply the formula for percent change. percent of change $=\frac{1.62-1.35}{1.35} \times 100=$ 20%. The price of coffee increased by 20%.
117. Find out the decrease in price. Change $=\$ 36-\$ 45=-\$ 9$ (Negative because it's a decrease). Use the formula to determine percent change. Percent Decrease $=\left(\frac{-\$ 9}{\$ 45}\right) \times 100 \%=-20 \%$. The shirt was discounted by 20%.
118. For Algebra: Score percentage $=\left(\frac{30}{35}\right) \times 100 \%=85.71 \%$. For Science: Score percentage $=\left(\frac{20}{30}\right) \times 100 \%=66.67 \%$. For Mathematics: Score percentage $=$ $\left(\frac{58}{70}\right) \times 100 \%=82.86 \%$. Comparing the percentages, Joe's highest score percentage is in Algebra at 85.71%.
119. Calculate the difference in price. Change $=\$ 420-\$ 480=-\$ 60$. Utilize the formula to find the percentage discount. Percent discount $=\left(\frac{-\$ 60}{\$ 480}\right) \times 100 \%=$ -12.5%. Emma availed a 12.5% discount on the computer's regular price.
120. Using the given information, 15% of the solution's volume equals 54 ml . Let the solution's total volume be represented by $V .0 .15 \times V=54 \mathrm{ml} \rightarrow v=360 \mathrm{ml}$. The total volume of the solution is 360 ml .
121. Calculate the tax amount. Tax Amount $=8 \%$ of $\$ 600$. Tax Amount $=$ $\left(\frac{8}{100}\right) \times \$ 600=\$ 48$. Add the tax amount to the original price to get the selling price. Selling price $=$ Original price + tax amount. Selling price $=\$ 600+\$ 48=$ \$648. The computer's selling price, including 8\% tax, is \$648.
122. Compute the tax amount. Tax amount $=10 \%$ of $\$ 450$, Tax amount $=$ $\left(\frac{10}{100}\right) \times \$ 450=\$ 45$. Include the tax amount to the original price for the selling price. Selling price $=$ Original price + Tax amount. Selling price $=\$ 450+\$ 45=$ $\$ 495$. The laptop's selling price, with 10% tax added, is $\$ 495$.
123. Calculate the tip amount. Tip amount $=14 \%$ of $\$ 500$. Tip amount $=$ $\left(\frac{14}{100}\right) \times \$ 500=\$ 70$. Nicolas tips the movers $\$ 70$.
124. Determine the tip for the meal. Tip amount $=20 \%$ of $\$ 40$, Tip amount $=$ $\left(\frac{20}{100}\right) \times \$ 40=\$ 8$. Sum the meal cost and tip to calculate the total bill. Total Bill $=$ Meal cost + Tip amount.

Total bill $=\$ 40+\$ 8=\$ 48$. Mason's total bill, including a 20% tip, amounts to \$48.
125. Use the formula $I=p r t$ to find the simple interest for loan. $I=$ $\$ 1,000 \times 0.05 \times 4=\$ 200$. The simple interest for a loan of $\$ 1,000$ at 5% for 4 years is $\$ 200$.
126. Use the formula $I=p r t . ~ I=\$ 400 \times 0.03 \times 5=\$ 60$. For a $\$ 400$ loan at 3% for 5 years, the simple interest totals $\$ 60$.
127. Do the calculation: $I=\$ 240 \times 0.04 \times 3=\$ 28.8$. On a $\$ 240$ loan at 4% over 3 years, the simple interest is $\$ 28.8$.
128. Compute the interest: $I=\$ 500 \times 0.045 \times 6=\$ 135$. A $\$ 500$ loan at a rate of 4.5% for 6 years will accrue $\$ 135$ in simple interest.
129. Depreciation is a decrease in the value of an asset over time. In this case, the car's value decreases by 8% per year. Calculate the depreciation value for the first year. Depreciation value $=8 \%$ of $\$ 20,000=\$ 1,600$. Subtract the depreciation value from the original value to get the car's value after one year. Value after one year $=$ Original value - Depreciation value $=\$ 20,000-\$ 1,600=$ $\$ 18,400$. So, one year after purchase, the car's value is $\$ 18,400$.
130. Use the simple interest formula, $I=p r t$. $I=\$ 7,000 \times 0.03 \times 5=\$ 1,050$. At the end of five years, Sara earns $\$ 1,050$ in interest.
131. To distribute the 2 , you'll multiply it with both the terms inside the parenthesis. $2 \times 6=12,2 \times x=2 x$. Combine these to get: $2 x+12$.
132. Multiply the 5 by each term inside: $5 \times 3=15,5 \times(-2 x)=-10 x$. Combine these to get: $-10 x+15$.
133. Multiply 7 by each term: $7 \times 1=7,7 \times(-5 x)=-35 x$. Combine to get: $-35 x+7$.
134. The process remains the same even if the number is outside on the right. $3 \times 7=21,-4 x \times 7=-28 x$. Combine: $-28 x+21$.
135. Multiply 6 by each term: $6 \times 2=12,6 \times(-3 x)=-18 x$. Combine: $-18 x+12$.
136. Multiplying with $-1:-1 \times-9=9,-1 \times x=-x$. Combine: $-x+9$.
137. Multiply -6 by each term: $-6 \times 3 x=-18 x,-6 \times-2=12$. Combine:
$-18 x+12$.
138. Multiply -4 by each term: $-4 \times(-x)=4 x,-4 \times 12=-48$. Combine:
$4 x-48$.
139. Multiply -2 by each term: $-2 \times 1=-2,-2 \times-6 x=12 x$. Combine:
$12 x-2$.
140. Multiply -8 by each term: $-8 \times(-5 x)=40 x,-8 \times-3=24$. Combine:
$40 x+24$.
141. Start by identifying perfect squares near 44 . The closest are $36\left(6^{2}\right)$ and $49\left(7^{2}\right)$. Since 44 falls between these values, the square root of 44 will be somewhere between 6 and 7. Closer inspection shows it's closer to 6 than 7. $\sqrt{44} \approx$ 6.6 (Rounded to one decimal place).
142. For 72 , the nearby perfect squares are $64\left(8^{2}\right)$ and $81\left(9^{2}\right)$. As 72 lies between these, its square root will be between 8 and 9 . Observing that 72 is closer to 64, we can estimate that it's a value slightly above $8 . \sqrt{72} \approx 8.5$ (Rounded to one decimal place).
143. The perfect squares around 27 are $25\left(5^{2}\right)$ and $36\left(6^{2}\right)$. This tells us that the square root of 27 will be a bit more than 5 but less than 6 . As 27 is only slightly above 25 , our estimate will be closer to $5 . \sqrt{27} \approx 5.2$ (Rounded to one decimal place).
144. For 92 , the perfect squares nearby are $81\left(9^{2}\right)$ and $100\left(10^{2}\right)$. So, the value of the square root of 92 will fall between 9 and 10 . Noting that 92 is nearer to 81 than 100, our approximation will be a bit higher than $9 . \sqrt{92} \approx 9.6$ (Rounded to one decimal place).
145. To estimate this value, you'd look for the nearest perfect squares. The closest are $4\left(2^{2}\right)$ and $9\left(3^{2}\right)$. Since 7 falls between these values, the square root of 7 will be between 2 and 3 . Observing the value 7 , you can deduce it's closer to 3 than 2. $\sqrt{7} \approx 2.6$ (Rounded to one decimal place).

146. For 30, the closest perfect squares are $25\left(5^{2}\right)$ and $36\left(6^{2}\right)$. As 30 lies between these values, its square root will be between 5 and 6 . Since 30 is closer to 25 , we can estimate that it's a value just above $5 . \sqrt{30} \approx 5.5$ (Rounded to one decimal place).

Chapter

Math topics in this chapter:

Practices

Find the products.

	$x^{2} \times 4 x y^{2}=$		$-6 x^{2} y^{6} \times 5 x^{4} y^{2}=$
	$3 x^{2} y \times 5 x^{3} y^{2}=$		$-3 x^{3} y^{3} \times 2 x^{3} y^{2}=$
1)	$6 x^{4} y^{2} \times x^{2} y^{3}=$	7)	$-6 x^{5} y^{3} \times 4 x^{4} y^{3}=$
2)	$7 x y^{3} \times 2 x^{2} y=$	8)	$-2 x^{4} y^{3} \times 5 x^{6} y^{2}=$
3)	$-5 x^{5} y^{5} \times x^{3} y^{2}=$	9)	$-7 y^{6} \times 3 x^{6} y^{3}=$
4)	$-8 x^{3} y^{2} \times 3 x^{3} y^{2}=$	10) 11)	$-9 x^{4} \times 2 x^{4} y^{2}=$

6 Simplify.

13) $\quad \frac{5^{3} \times 5^{4}}{5^{9} \times 5}=$
14)
15) $\frac{3^{3} \times 3^{2}}{7^{2} \times 7}=$
16) $\frac{15 x^{5}}{5 x^{3}}=$
17) $\frac{16 x^{3}}{4 x^{5}}=$
18)

$$
\frac{72 y^{2}}{8 x^{3} y^{6}}=
$$

18)
19)
20)
21)
22)

$\frac{10 x^{3} y^{4}}{50 x^{2} y^{3}}=$
$\frac{13 y^{2}}{52 x^{4} y^{4}}=$
$\frac{50 x y^{3}}{200 x^{3} y^{4}}=$
$\frac{48 x^{2}}{56 x^{2} y^{2}}=$
$\frac{81 y^{6} x}{54 x^{4} y^{3}}=$
${ }^{23}$ Solve.
24)
$\left(x^{3} y^{3}\right)^{2}=$
25)
26) $\left(3 x^{3} y^{4}\right)^{3}=$
27) $\left(4 x \times 6 x y^{3}\right)^{2}=$
28) $\left(5 x \times 2 y^{3}\right)^{3}=$
$\left(\frac{9 x}{x^{3}}\right)^{2}=$
$\left(\frac{3 y}{18 y^{2}}\right)^{2}=$
29)
30)
$\left(\frac{3 x^{2} y^{3}}{24 x^{4} y^{2}}\right)^{3}=$
31)
$\left(\frac{26 x^{5} y^{3}}{52 x^{3} y^{5}}\right)^{2}=$
32)
$\left(\frac{18 x^{7} y^{4}}{72 x^{5} y^{2}}\right)^{2}=$
$\left(\frac{12 x^{6} y^{4}}{48 x^{5} y^{3}}\right)^{2}=$

E Evaluate each expression.
$\left(\frac{1}{4}\right)^{-2}=$
$\left(\frac{2}{5}\right)^{-3}=$
$\left(\frac{1}{3}\right)^{-2}=$
$\left(\frac{2}{3}\right)^{-3}=$
$\left(\frac{1}{7}\right)^{-3}=$
36)
$\left(\frac{3}{5}\right)^{-4}=$
33)
34)

Write each expression with positive exponents.
35)

$$
x^{-7}=
$$

39)

$$
3 y^{-5}=
$$

40) $\quad 15 y^{-3}=$
41)
42)
43)
44)
45)
46)
47)
48)

$$
25 a^{3} b^{-4} c^{-3}=
$$

$$
-4 x^{5} y^{-3} z^{-6}=
$$

$$
\frac{18 y}{x^{3} y^{-2}}=
$$

$$
\frac{20 a^{-2} b}{-12 c^{-4}}=
$$

Write each number in scientific notation.
48)
$0.00412=$
50)
$66,000=$
49)
51)
$0.000053=$
$72,000,000=$
52) Write the answer in sciestific notation.
53)

$$
\left.6 \times 10^{4}+10 \times 10^{4}=\quad 56\right)
$$

$8.3 \times 10^{9}-5.6 \times 10^{8}=$ \qquad
54)
57)
$7.2 \times 10^{6}-3.3 \times 10^{6}=$ \qquad $1.4 \times 10^{2}+7.4 \times 10^{5}=$ \qquad
58)

$$
\left.2.23 \times 10^{7}+5.2 \times 10^{7}=-\quad 61\right)
$$

$9.6 \times 10^{6}-3 \times 10^{4}=$ \qquad

59 Simplify. Write the answer in scientific notation.
60)

$$
\begin{aligned}
& \left(5.6 \times 10^{12}\right)\left(3 \times 10^{-7}\right)=6_{3}^{6} \\
& \left(3 \times 10^{-8}\right)\left(7 \times 10^{10}\right)= \\
& \left(9 \times 10^{-3}\right)\left(4.2 \times 10^{6}\right)=
\end{aligned}
$$

63)

$\frac{125 \times 10^{9}}{50 \times 10^{12}}=$ \qquad
$\frac{2.8 \times 10^{12}}{0.4 \times 10^{20}}=$ \qquad
$\frac{9 \times 10^{8}}{3 \times 10^{7}}=$ \qquad

Answers

	$4 x^{3} y^{2}$		$x^{6} y^{6}$		$\frac{12 b^{5}}{}$
	$15 x^{5} y^{3}$				a^{3}
					$25 a^{3}$
	$6 x^{6} y^{5}$		$576 x$		$\overline{b^{4} c^{3}}$
1)	$14 x^{3} y^{4}$	23)			$4 x^{5}$
2)		24)	1,000		$\overline{y^{3} z^{6}}$
3)	$-5 x^{8} y^{7}$	25)		44)	$18 y^{3}$
4)	$-24 x^{6} y^{4}$	$26)$		45)	$\frac{x^{3}}{}$
5)			$\frac{1}{36 y^{2}}$		$5 b c^{4}$
6)	$-30 x^{6} y^{8}$	27)		46)	$\frac{3 a^{2}}{}$
7)	$-6 x^{6} y^{5}$	28)	$\frac{y^{3}}{512 x^{6}}$	47)	4.12×10^{-3}
8)	$-24 x^{9} y^{6}$	29)	x^{4}	48)	5.3×10^{-5}
9)	$-10 x^{10} y^{5}$	30)	$\frac{x^{4}}{4}$	49)	6.6×10^{4}
10)			$\underline{x^{4} y^{4}}$	50)	
11)	$-21 x^{6} y^{9}$	31)	16	51)	7.2×10^{7}
12)	$-18 x^{8} y^{2}$	32)	$\frac{x^{2} y^{2}}{16}$	52)	1.6×10^{5}
13)	$\frac{1}{125}$	33)	16	53)	3.9×10^{6}
14)	243	34)	9	54)	7.43×10^{7}
15)	343	35)		55)	
16)	$3 x^{2}$	36)	343	56)	7.74×10^{9}
			$\underline{125}$	57)	7.4014×10^{5}
17)	$\frac{4}{x^{2}}$	37)	8	58)	9.57×10^{6}
18)	9	38)	$\underline{27}$	59)	
	$\overline{x^{3} y^{4}}$	39)	8	$60)$	1.68×10^{6}
19)	$\underline{x y}$		$\frac{625}{81}$	61)	2.1×10^{3}
20)	5	40)		6)	2.1×10^{3}
	$\underline{1}$		$\frac{1}{x^{7}}$	62)	3.78×10^{4}
21)	$\overline{4 x^{4} y^{2}}$	41)	x^{7}	63)	
	1	42)	$\frac{3}{5}$		2.5×10^{-3}
22)	$\overline{4 x^{2} y}$		y^{5}		7×10^{-8}
			$\underline{15}$		
	$\frac{6}{7 y^{2}}$		$\overline{y^{3}}$		3×10^{1}
	$3 y^{3}$		$-\frac{20}{x^{4}}$		
	$\frac{3 y^{3}}{2 x^{3}}$		x^{4}		

Answers and Explanations

1. Multiply the coefficients and then apply the product of powers rule for each term. Coefficients: $1 \times 4=4$. For $x: x^{2} \times x=x^{2+1}=x^{3}$. Result: $4 x^{3} y^{2}$.
2. Coefficients: $3 \times 5=15$. For $x: x^{2} \times x^{3}=x^{2+3}=x^{5}$. For $y: y \times y^{2}=y^{1+2}=y^{3}$. Answer: $15 x^{5} y^{3}$.
3. Coefficients remain as 6 (since multiplying by 1). For x : $x^{4} \times x^{2}=x^{4+2}=x^{6}$. For $y: y^{2} \times y^{3}=y^{2+3}=y^{5}$. Result: $6 x^{6} y^{5}$.
4. Coefficients: $7 \times 2=14$. For $x: x \times x^{2}=x^{1+2}=x^{3}$. For $y: y^{3} \times y=y^{3+1}=y^{4}$. Result: $14 x^{3} y^{4}$.
5. Coefficients: $-5 \times 1=-5$. For $x: x^{5} \times x^{3}=x^{5+3}=x^{8}$. For $y: y^{5} \times y^{2}=y^{5+2}=$ y^{7}. Answer: $-5 x^{8} y^{7}$.
6. Numerically, -8 times 3 is -24 . x^{3} terms combine to $x^{6} . y^{2}$ terms stay as y^{4}. The product is $-24 x^{6} y^{4}$.
7. For the numbers, -6 times 5 is -30 . Combining x terms, x^{2} and x^{4} yield x^{6}. For y, y^{6} and y^{2} produce y^{8}. It's $-30 x^{6} y^{8}$.
8. -3 multiplied by 2 gives -6 . The x^{3} terms result in x^{6}. For y, y^{3} and y^{2} become y^{5}. The answer is $-6 x^{6} y^{5}$.
9. -6 times 4 is -24 . Combining x^{\prime} s, x^{5} and x^{4} produce $x^{9} . y^{3}$ s yield y^{6}. Hence, $-24 x^{9} y^{6}$.
10. Numerically, -2 times 5 is $-10 . x^{4}$ and x^{6} combine to $x^{10} . y^{3}$ and y^{2} become y^{5}. It's $-10 x^{10} y^{5}$.
11. -7 times 3 results in -21 . The x term is just x^{6}. Combining $y^{\prime} \mathrm{s}, y^{6}$ and y^{3} give y^{9}. The answer is $-21 x^{6} y^{9}$.
12. -9 times 2 is -18 . For x, x^{4} times x^{4} yields x^{8}. The y term remains y^{2}. The result is $-18 x^{8} y^{2}$.
13. To simplify this expression, you can combine the exponents of like bases by adding them when multiplying and subtracting them when dividing. Here, $5^{3} \times 5^{4}$ becomes $5^{3+4}=5^{7}$ and $5^{9} \times 5$ becomes $5^{9+1}=5^{10}$. Then you divide 5^{7} by 5^{10}, which is $5^{7-10}=5^{-3}$. This is the same as $\frac{1}{5^{3}}$, which simplifies to $\frac{1}{125}$.
14. Combine the exponents for the number 3: $3^{3} \times 3^{2}=3^{3+2}=3^{5}$. For the number 7, it's $7^{2} \times 7=7^{2+1}=7^{3}$. Now, divide 3^{5} by 7^{3}. Since these are different bases, you cannot simplify further and are left with $\frac{3^{5}}{7^{3}}$ or $\frac{243}{343}$.
15. Divide the numerical coefficients: $\frac{15}{5}=3$, hen, for the variable $\frac{x^{5}}{x^{3}}=x^{5-3}=x^{2}$. Combining these gives you $3 x^{2}$.
16. First, divide the numbers: $\frac{16}{4}=4$. For $\frac{x^{3}}{x^{5}}$ you subtract the exponents (since you're dividing like bases), which gives you $x^{3-5}=x^{-2}$. This means $\frac{4}{x^{2}}$.
17. Divide the numerical coefficients: $\frac{72}{8}=9$. For $\frac{y^{2}}{y^{6}}$, subtract the exponents, giving $y^{2-6}=y^{4}$, which is $\frac{1}{y^{4}}$. Since the x^{3} in the denominator does not have a corresponding x in the numerator, the final answer is $\frac{9}{x^{3} y^{4}}$.
18. Divide the numbers: $\frac{10}{50}=\frac{1}{5}$. For, $\frac{x^{3}}{x^{2}}$, subtract the exponents: $x^{3-2}=x$. Do the same for $\frac{y^{4}}{y^{3}}=y^{4-3}=y$. The final answer is $\frac{x y}{5}$.
19. Here, divide the coefficients: $\frac{13}{52}=\frac{1}{4}$. For the variables, $\frac{y^{2}}{y^{4}}=y^{2-4}=y^{-2}$, which is $\frac{1}{y^{2}}$. There is no x in the numerator to cancel out the x^{4} in the denominator, so the answer is $\frac{1}{4 x^{4} y^{2}}$.
20. Divide $\frac{50}{200}$ to get $\frac{1}{4}$. Now, $\frac{x y^{3}}{x^{3} y^{4}}$ means you have to deal with the exponents separately for x and y. For x, there's no exponent in the numerator, so $\frac{x}{x^{3}}=x^{1-3}=$ x^{-2}. For y, it's $\frac{y^{3}}{y^{4}}=y^{3-4}=y^{-1}$. Combined, you have $\frac{1}{4 x^{2} y}$.
21. First, divide $\frac{48}{56}$ which simplifies to $\frac{6}{7}$ when reduced. For the x^{2} terms, since the exponents are the same, $\frac{x^{2}}{x^{2}}$ cancels out to 1 . The y^{2} in the denominator remains, so the final expression is $\frac{6}{7 y^{2}}$.
22. Divide the numerical coefficients $\frac{81}{54}$, which reduces to $\frac{3}{2}$. Then for the variables: $\frac{x}{x^{4}}=\frac{1}{x^{3}}$, and $\frac{y^{6}}{y^{3}}=y^{6-3}=y^{3}$. Putting it all together gives $\frac{3 y^{3}}{2 x^{3}}$.
23. When raising a power to a power, you multiply the exponents. For x^{3} raised to the power of 2 , you multiply the exponents: $3 \times 2=6$ resulting in x^{6}. Similarly, for y^{3} raised to the power of 2 , you get y^{6}. The result is $x^{6} y^{6}$.
24. Start by raising the coefficient 3 to the power of 3 , which is 27 . Then, raise x^{3} the power of 3 to get x^{9}. Finally, y^{4} to the power of 3 gives y^{12}. Combined, you get $27 x^{9} y^{12}$.
25. First, multiply the coefficients: $4 \times 6=24$. Then multiply $x \times x$ to get x^{2}. Finally, there's a y^{3} term. Combining these gives $24 x^{2} y^{3}$. Now, square the entire expression to get $576 x^{4} y^{6}$.
26. Multiply the numbers first: $5 \times 2=10$. Combine x and y^{3} to get $10 x y^{3}$. Now, raise the entire expression to the third power. This results in $1,000 x^{3} y^{9}$.
27. Here, divide $9 x$ by x^{3}. The x 's will reduce to x^{-2}. When you square the result, you get $\frac{81}{x^{4}}$.
28. Divide 3 by 18 to get $\frac{1}{6}$. Then, simplify $\frac{y}{y^{2}}$ to get y^{-1}. Squaring the result, you have $\frac{1}{36 y^{2}}$.
29. Begin by simplifying the terms inside the parentheses before taking the cube. For the constants, 3 divided by 24 is $\frac{1}{8}$. For the terms involving x, x^{2} divided by x^{4} is x^{-2}. For the terms involving y, y^{3} divided by y^{2} is y. So, before taking the cube, the expression is $\frac{y}{8 x^{2}}$. When you cube this, you get $\frac{y^{3}}{512 x^{6}}$.
30. First, divide the coefficients, 26 by 52, which is $\frac{1}{2}$. Then, for $x: \frac{x^{5}}{x^{3}}$ results in x^{2}. For $y: \frac{y^{3}}{y^{5}}$ results in y^{2}. Combining these gives $\frac{x^{2}}{2 y^{2}}$. Squaring this entire expression provides $\frac{x^{4}}{4 y^{4}}$.
31. Dividing the numbers, 18 by 72 becomes $\frac{1}{4}$. Simplifying x : $\frac{x^{7}}{x^{5}}$ becomes x^{2}. Simplifying $y: \frac{y^{4}}{y^{2}}$ becomes y^{2}. Combining these results, you have $\frac{x^{2} y^{2}}{4}$. When squared, this gives $\frac{x^{4} y^{4}}{16}$.
32. Start by dividing the coefficients, 12 by 48, which results in $\frac{1}{4}$. For the terms involving $x, \frac{x^{6}}{x^{5}}$ is x. For $y, \frac{y^{4}}{y^{3}}$ becomes y. Combining them, the expression is $\frac{x y}{4}$. Squaring this entire expression, you get $\frac{x^{2} y^{2}}{16}$.
33. A negative exponent means to take the reciprocal of the base and then raise it to the positive value of that exponent. For $\frac{1}{4}$ the reciprocal is $\frac{4}{1}$ or just 4 . Raising 4 to the power of 2 (because of the -2 exponent) results in $4^{2}=16$.
34. Take the reciprocal of $\frac{1}{3}$, which is 3 (or $\frac{3}{1}$). Now, square 3 (due to the -2 exponent), which equals $3^{2}=9$.
35. First, find the reciprocal of $\frac{1}{7}$, which is 7 . Now, raise 7 to the power of 3 (because of the -3 exponent) to get $7^{3}=343$.
36. For $\frac{2}{5}$, the reciprocal is $\frac{5}{2}$. Raise this fraction to the power of 3 . That means you'll cube both the numerator and the denominator separately: $5^{3}=125$, and $2^{3}=8$. Thus, the result is $\frac{125}{8}$.
37. The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$. Cube both the numerator and the denominator separately: $3^{3}=27$, and $2^{3}=8$. So, the answer is $\frac{27}{8}$.
38. For $\frac{3}{5}$, the reciprocal is $\frac{5}{3}$. When raised to the power of 4 , this means you'll raise both the numerator and denominator to the 4th power:
$5^{4}=625$, and $3^{4}=81$. The final result is $\frac{625}{81}$.
39. A negative exponent means you'll take the reciprocal. In terms of x, this means you'll move it from the numerator to the denominator. So, x^{-7} becomes $\frac{1}{x^{7}}$.
40. The negative exponent on y means we'll place y in the denominator. The coefficient 3 remains in the numerator. Thus, it becomes $\frac{3}{y^{5}}$.
41. The y term, because of its negative exponent, will go to the denominator. This gives $\frac{15}{y^{3}}$.
42. The x term moves to the denominator due to its negative exponent. This results in $\frac{-20}{x^{4}}$.
43. The a term's negative exponent means it will be placed in the denominator, while the b^{5} remains in the numerator. This results in $\frac{12 b^{5}}{a^{3}}$.
44. Here, both b and c have negative exponents, so they'll move to the denominator. a^{3} remains in the numerator. The expression becomes $\frac{25 a^{3}}{b^{4} c^{3}}$.
45. Both y and z will move to the denominator because of their negative exponents, while x^{5} remains in the numerator. This gives $\frac{-4 x^{5}}{y^{3} z^{6}}$.
46. The negative exponent on y means it moves to the numerator, thus multiplying with the already existing y in the numerator. This results in $\frac{18 y^{3}}{x^{3}}$.
47. The negative exponent on a sends it to the denominator, while b remains in the numerator. The c term's negative exponent brings it to the numerator. Combining these adjustments gives $\frac{-20 b c^{4}}{12 a^{2}}$. Simplifying further, this results in $-\frac{5 b c^{4}}{3 a^{2}}$.
48. Scientific notation involves representing a number as a product of two numbers: a coefficient between 1 and 10, and a power of 10 . To express 0.00412 in scientific notation, we shift the decimal point two places to the right to make it 4.12. In doing so, we're multiplying by 10^{3} or 1000 . However, since the original number was smaller, we must divide by 10^{3} to balance the operation, resulting in the exponent being -3 . Hence, 0.00412 in scientific notation is 4.12×10^{-3}.
49. Shift the decimal point five places to the right to get 5.3. This is equivalent to multiplying by 10^{5}. But since the original number was smaller, our exponent will be -5 . Thus, the scientific notation for 0.000053 is 5.3×10^{-5}.
50. Move the decimal point from the end of the number four places to the left to make it 6.6. In this process, you're effectively dividing the number by 10^{4} or 10,000 . To balance the operation, we multiply by 10^{4}. Therefore, 66,000 in scientific notation is 6.6×10^{4}.
51. Shift the decimal seven places to the left to get 7.2. We've divided the number by 10^{7} or $10,000,000$. To counteract that division, we multiply by 10^{7}. Hence, $72,000,000$ in scientific notation is 7.2×10^{7}.
52. When adding numbers in scientific notation with the same exponent, simply add their coefficients. So, $6+10=16$. Your answer is 1.6×10^{5}.
53. For numbers with the same exponent, subtract their coefficients.
$7.2-3.3=3.9$. The result is 3.9×10^{6}.
54. Combine the coefficients by adding them: $2.23+5.2=7.43$. So, your answer is 7.43×10^{7}.
55. To subtract these, you need to express them with the same exponent. Rewrite 5.6×10^{8} as 0.56×10^{9}. Then subtract: $8.3-0.56=7.74$. The answer is 7.74×10^{9}.
56. The exponents are different, so focus on the one with the larger exponent. You can rewrite 1.4×10^{2} as 0.0014×10^{5}. Now, add the coefficients:
$0.0014+7.4=7.4014$. The result is 7.4014×10^{5}.
57. Rewrite 3×10^{4} as 0.03×10^{6}. Subtracting the coefficients gives $9.6-0.03=$ 9.57. The result is 9.57×10^{6}.
58. When you multiply numbers in scientific notation, you multiply the coefficients (the numbers in front) together, and then you add the exponents. Coefficient multiplication: $5.6 \times 3=16.8$. Exponent addition:
$12+(-7)=5$. Answer: 1.68×10^{6}.
59. Multiply the coefficients and add the exponents. Coefficient multiplication: $3 \times 7=21$.

Exponent addition: $(-8)+10=2$. Answer: 2.1×10^{3}.
60. Coefficient multiplication: $9 \times 4.2=37.8$. Exponent addition: $(-3)+6=3$. Answer: 3.78×10^{4}.
61. For division, you divide the coefficients and subtract the second exponent from the first. Coefficient division: $125 \div 50=2.5$. Exponent subtraction:
$9-12=-3$. Answer: 2.5×10^{-3}.
62. Divide the coefficients and subtract the exponents. Coefficient division:
$2.8 \div 0.4=7$. Exponent subtraction: $12-20=-8$. Answer: 7×10^{-8}.
63. Coefficient division: $9 \div 3=3$. Exponent subtraction: $8-7=1$.

Answer: 3×10^{1}.

Chapter

Expressions and Equations

Math topics in this chapter:

Practices

25 Simplify each expression.

	$(3+4 x-1)=$		$-5-3 x^{2}-6+4 x=$
	$(-5-2 x+7)=$		$-6+9 x^{2}-3+x=$
1)	$(12 x-5 x-4)=$	8)	$5 x^{2}+3 x-10 x-3=$
2)	$(-16 x+24 x-9)=$	9)	$4 x^{2}-2 x-6 x+5-8=$
3)	$(6 x+5-15 x)=$	10)	$3 x^{2}-5 x-7 x+2-4=$
4)	$2+5 x-8 x-6=$	11)	
5)	$2+5 x-8 x-6=$	12)	$9 x^{2}-x-5 x+3-9=$
6)	$5 x+10-3 x-22=$	13)	$2 x^{2}-7 x-3 x^{2}+4 x+6=$
7)		14)	

Evaluate each expression using the value given.

15)
16)
17)
18)
19)
20)

$$
\begin{array}{lll}
\text { 15) } & x=4 \rightarrow 10-x=_ & 22) \\
\text { 16) } & x=6 \rightarrow x+8=- & 23) \\
\text { 17) } & x=3 \rightarrow 2 x-6=- & 24) \\
\text { 18) } & x=2 \rightarrow 10-4 x=- & 26) \\
\text { 19) } & x=7 \rightarrow 8 x-3=- & 27) \\
\text { 20) } & x=9 \rightarrow 20-2 x=\ldots & 28) \\
21) & x=- & x=5 \rightarrow 10 x-30=
\end{array}
$$

$$
\begin{aligned}
& x=-6 \rightarrow 5-x= \\
& x=-3 \rightarrow 22-3 x= \\
& x=-7 \rightarrow 10-9 x= \\
& x=-10 \rightarrow 40-3 x=- \\
& x=-2 \rightarrow 20 x-5= \\
& x=-5 \rightarrow-10 x-8=- \\
& x=-4 \rightarrow-1-4 x=
\end{aligned}
$$

29)

3 Evaluate each expression using the values given.

31)

$$
\begin{aligned}
& x=2, y=1 \rightarrow 2 x+7 y= \\
& a=3, b=5 \rightarrow 3 a-5 b= \\
& x=6, y=2 \rightarrow 3 x-2 y+8= \\
& a=-2, b=3 \rightarrow-5 a+2 b+6= \\
& x=-4, y=-3 \rightarrow-4 x+10-8 y=
\end{aligned}
$$

32)
33)

Solve each equation.

$x+6=3 \rightarrow x=$ \qquad
$10-x=-2 \rightarrow x=$ \qquad
$5=11-x \rightarrow x=$
$22-x=-9 \rightarrow x=$ \qquad
$-3=8+x \rightarrow x=$ \qquad
$-4+x=28 \rightarrow x=$ \qquad
34) $x-2=-7 \rightarrow x=\ldots \quad$ 39)
35) $-15=x+6 \rightarrow x=\quad$ 40)
$-15=x+6 \rightarrow x=$ \qquad 41)
$11-x=-7 \rightarrow x=$ \qquad
$35-x=-7 \rightarrow x=$ \qquad

Solve each equation.
43)
$4(x+2)=12 \rightarrow x=$ \qquad
$-6(6-x)=12 \rightarrow x=$ \qquad
44)
45)
$5=-5(x+2) \rightarrow x=$ \qquad
46)
47)

$$
-10=2(4+x) \rightarrow x=-\quad 50)
$$

$4(x+2)=-12 \rightarrow x=$ \qquad
$-6(3+2 x)=30 \rightarrow x=$ \qquad
$-3(4-x)=12 \rightarrow x=$ \qquad
$-4(6-x)=16 \rightarrow x=$ \qquad
52)
$q=2 l+2 w$ for w.
54)
$p v=n R T$ for T.
$x=2 y w$ for w.
53)
$a=b+c+d$ for d.

Solve.

Find the midpoint of the fiqne segment with the given endpoints.

57)
58)
59)

$(5,0),(1,4)$
$(2,3),(4,7)$
$(8,1),(2,5)$
64) $(5,10),(3,6)$
61)
62)
63)
69)
70)

Find the distance betweef each pair of points.
67)
$(-2,8),(-6,8)$
72)
$(4,3),(7,-1)$
68)
$(4,-4),(14,20)$
73)
$(2,6),(10,-9)$
$(-1,9),(-5,6)$
$(0,3),(4,3)$
$(0,-2),(5,10)$
$(3,3),(6,-1)$
$(-2,-12),(14,18)$
$(2,-2),(12,22)$
$(4,-1),(-2,7)$
$(2,-5),(4,1)$
$(7,6),(-5,2)$
$(-2,8),(4,-6)$

Answers

1) $4 x+2$
2) $-2 x+2$
3) $7 x-4$
4) $8 x-9$
5) $-9 x+5$
6) $-3 x-4$
7) $2 x-12$
8) $-3 x^{2}+4 x-11$
9) $9 x^{2}+x-9$
10) $5 x^{2}-7 x-3$
11) $4 x^{2}-8 x-3$
12) $3 x^{2}-12 x-2$
13) $9 x^{2}-6 x-6$
14) $-x^{2}-3 x+6$
15) 6
16) 14
17) 0
18) 2
19) 53
20) 2
21) 20
22) 11
23) 31
24) 73
25) 70
26) -45
27) 42
28) 15
29) 11
30) -16
31) 22
32) 22
33) 50
34) -3
35) 6
36) -11
37) -5
38) -21
39) 12
40) 31
41) 32
42) 18
43) 42
44) 1
45) 8
46) -3
47) -9
48) -5
49) -4
50) 8
51) 10

Answers and Explanations

1. Combine like terms. There are no like terms to the variable x and the constants can be combined. Answer: $4 x+2$.
2. Combining the constants, $-5+7$ gives 2 . The term $-2 x$ remains as it is. Result: $-2 x+2$.
3. Combine the like terms (terms that have x). $12 x$ minus $5 x$ equals $7 x$. The constant -4 remains unchanged. Simplified: $7 x-4$.
4. When we combine the x terms, $-16 x+24 x$ gives $8 x$. The constant -9 is unaltered. Answer: $8 x-9$.
5. Combine the x coefficients. $6 x$ minus $15 x$ is $-9 x$. The constant 5 remains the same. Simplified: $-9 x+5$.
6. Combine the x coefficients: $5 x$ minus $8 x$ results in $-3 x$. Next, combine the constants: 2 minus 6 is -4 . Answer: $-3 x-4$.
7. $5 x$ minus $3 x$ gives $2 x$. And 10 minus 22 equals -12 . Answer: $2 x-12$.
8. The term $-3 x^{2}$ remains as it is. The x term, $4 x$, remains unchanged. Combining the constants, $-5-6$ gives -11 . Simplified: $-3 x^{2}+4 x-11$.
9. The term $9 x^{2}$ stands alone. Combining the x terms, x remains unchanged.
-6 minus 3 equals -9 . Simplified: $9 x^{2}+x-9$.
10. The term $5 x^{2}$ is unaltered. $3 x$ minus $10 x$ is $-7 x$. The constant -3 remains the same. Answer: $5 x^{2}-7 x-3$.
11. The term $4 x^{2}$ stands alone. $-2 x$ minus $6 x$ results in $-8 x .5$ minus 8 gives -3 . Result: $4 x^{2}-8 x-3$.
12. The term $3 x^{2}$ is unaltered. $-5 x$ minus $7 x$ equals $-12 x$. 2 minus 4 results in -2 . Result: $3 x^{2}-12 x-2$.
13. The term $9 x^{2}$ is unchanged. $-x$ minus $5 x$ gives $-6 x .3$ minus 9 is -6 . Answer: $9 x^{2}-6 x-6$.
14. Combine the x^{2} terms: $2 x^{2}$ minus $3 x^{2}$ equals $-x^{2}$. $-7 x$ plus $4 x$ is $-3 x$. The constant 6 remains unchanged. Result: $-x^{2}-3 x+6$.
15. Subtract the value of x (which is 4) from 10 to get the result, 6 .
16. Plugging in 6 for $x: 6+8=14$. Hence, with x as $6, x+8$ is 14 .
17. Multiply 2 by 3 and then subtract $6:(2 \times 3)-6=6-6=0$. Thus, if x is 3 , $2 x-6$ is 0 .
18. Multiply 4 by 2 and subtract from 10: $10-(4 \times 2)=10-8=2$. Here, with x being $2,10-4 x$ equals 2 .
19. Multiply 8 by 7 and then subtract $3:(8 \times 7)-3=56-3=53$. So, if x is 7, $8 x-3$ becomes 53 .
20. Multiplying 2 by 9 and subtracting from 20: $20-(2 \times 9)=20-18=2$. This means, for x as $9,20-2 x$ is 2 .
21. By multiplying 10 by 5 and then subtracting 30:
$(10 \times 5)-30=50-30=20$. Thus, when x is $5,10 x-30$ gives 20 .
22. Subtracting -6 from 5 gives: $5-(-6)=5+6=11$. So, with x as $-6,5-x$ results in 11.
23. Multiplying 3 by -3 and adding to 22: $22-(3 \times(-3))=22+9=31$. Hence, for x equal to $-3,22-3 x$ equals 31 .
24. Multiply 9 by -7 and add to $10: 10-(9 \times(-7))=10+63=73$. Thus, when x is $-7,10-9 x$ is 73 .
25. Multiply 3 by -10 and add to $40: 40-(3 \times(-10))=40+30=70$. With x as $-10,40-3 x$ results in 70 .
26. Multiply 20 by -2 and subtract 5 : $(20 \times(-2))-5=-40-5=-45$. Hence, for x being $-2,20 x-5$ is -45 .
27. Multiply -10 by -5 and subtract 8 : $(-10 \times(-5))-8=50-8=42$. So, if x equals $-5,-10 x-8$ gives 42 .
28. Multiplying 4 by -4 and subtracting from -1 :
$-1-(4 \times(-4))=-1+16=15$. With x as $-4,-1-4 x$ results in 15 .
29. For this expression, replace x with 2 and y with $1: 2(2)+7(1)=4+7=11$. With the values provided, the expression evaluates to 11.
30. Insert the values for a and b into the equation: $3(3)-5(5)=9-25=-16$. Using the assigned values, the expression calculates to -16 .
31. Place the given values of x and y into the equation:
$3(6)-2(2)+8=18-4+8=22$. By substituting the values for x and y, we get the result as 22 .
32. Add the given values of a and b to the formula:
$-5(-2)+2(3)+6=10+6+6=22$. By inputting -2 for a and 3 for b, the sum becomes 22 .
33. Plug the provided x and y into the equation:
$-4(-4)+10-8(-3)=16+10+24=50$. Employing the given values for x and y results in a sum of 50 .
34. To solve for x, you need to isolate x on one side of the equation. First, subtract 6 from both sides of the equation to get: $x+6-6=3-6, x=-3$.
35. To solve for x in this equation, you want to isolate x on one side. Begin by subtracting 11 from both sides: $5-11=11-x-11 \rightarrow-6=-x$. Now, to find x, multiply both sides by -1 to get: $-1 \times(-6)=-1 \times(-x) \rightarrow 6=x$.
36. Start by subtracting 8 from both sides of the equation:
$-3-8=8+x-8 \rightarrow-11=x$.
37. To solve for x, add 2 to both sides of the equation:
$x-2+2=-7+2 \rightarrow x=-5$.
38. To isolate x, subtract 6 from both sides of the equation:
$-15-6=x+6-6 \rightarrow-21=x$.
39. Start by adding x to both sides of the equation:
$10-x+x=-2+x \rightarrow 10=x-2$. Now, add 2 to both sides:
$10+2=x-2+2 \rightarrow 12=x$.
40. Add x to both sides of the equation: $22-x+x=-9+x \rightarrow 22=-9+x$. Now, subtract -9 from both sides: $22+9=-9+x+9 \rightarrow 31=x$.
41. To solve for x, add 4 to both sides of the equation:
$-4+x+4=28+4 \rightarrow x=32$.
42. Add x to both sides of the equation: $11-x+x=-7+x \rightarrow 11=-7+x$. Now, add 7 to both sides: $11+7=-7+x+7 \rightarrow 18=x$.
43. Add x to both sides of the equation: $35-x+x=-7+x \rightarrow 35=-7+x$. Now, add 7 to both sides: $35+7=-7+x+7 \rightarrow 42=x$.
44. Multiply out the brackets: $4 x+8=12$. Subtract 8 from both sides: $4 x=4$. Divide by $4: x=1$.
45. Distribute the $-6:-36+6 x=12$. Add 36 to both sides: $6 x=48$. Divide by $6: x=8$.
46. Multiply out the brackets: $5=-5 x-10$. Add $5 x$ to both sides: $5 x+5=-10$. Subtract 5 from both sides: $5 x=-15$. Divide by 5: $x=-3$.
47. Distribute the 2 : $-10=8+2 x$. Subtract 8 from both sides: $-18=2 x$. Divide by 2 : $x=-9$.
48. Multiply out the brackets: $4 x+8=-12$. Subtract 8 from both sides:
$4 x=-20$. Divide by $4: x=-5$.
49. Distribute the $-6:-18-12 x=30$. Add 18 to both sides: $-12 x=48$. Divide by -12 : $x=-4$.
50. Distribute the $-3:-12+3 x=12$. Add 12 to both sides: $3 x=24$. Divide by $3: x=8$.
51. Distribute the $-4:-24+4 x=16$. Add 24 to both sides: $4 x=40$. Divide by 4: $x=10$.
52. First, isolate the terms with w by subtracting $2 l$ from both sides: $q-2 l=2 w$. Now, divide both sides by 2 to solve for $w . w=\frac{q-2 l}{2}$. When simplified further: $w=\frac{1}{2} q-l$.
53. Initially, to free w from being multiplied, divide both sides by $2 y$: $w=\frac{x}{2 y}$.
54. Begin by isolating T. To do this, divide both sides by $n R: T=\frac{p v}{n R}$.
55. To get d on its own, subtract both b and c from each side: $d=a-b-c$.
56. The x-coordinate of the midpoint is the average of 5 and 1 , which is $\frac{5+1}{2}=3$. Similarly, the y-coordinate of the midpoint is the average of 0 and 4 , which is $\frac{0+4}{2}=2$. Midpoint: $(3,2)$.
57. For the x-values: $\frac{2+4}{2}=3$. For the y-values: $\frac{3+7}{2}=5$. Midpoint: $(3,5)$.
58. The central x-coordinate is $\frac{8+2}{2}=5$ and the y-coordinate is $\frac{1+5}{2}=3$. Midpoint: $(5,3)$.
59. For x, you have $\frac{5+3}{2}=4$. For $y, \frac{10+6}{2}=8$. Midpoint: $(4,8)$.
60. Taking the middle for $x: \frac{4+(-2)}{2}=1$ and for $y: \frac{-1+7}{2}=3$. Midpoint: $(1,3)$.
61. Average the x-values: $\frac{2+4}{2}=3$. For $y: \frac{-5+1}{2}=-2$. Midpoint: $(3,-2)$.
62. The x^{\prime} s midpoint is $\frac{7-5}{2}=1$. For $y^{\prime} \mathrm{s}, \mathrm{it}$'s $\frac{6+2}{2}=4$. Midpoint: $(1,4)$.
63. For the x-axis: $\frac{-2+4}{2}=1$. For the y-axis: $\frac{8-6}{2}=1$. Midpoint: $(1,1)$.
64. Use the distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=$ $\sqrt{\left(-6-(-2)^{2}-(8-8)^{2}\right.}=4$
65. Calculate the differences in x and y, square them, and add. Then take the square root: $d=\sqrt{(14-4)^{2}-(20-(-4))^{2}}=\sqrt{100+576}=\sqrt{676} . d=26$.
66. Find the differences in x and y, square, add, and root:
$d=\sqrt{(-5-(-1))^{2}+(6-9)^{2}}=\sqrt{16+9}=\sqrt{25}=5$.
67. Use the distance formula: $d=\sqrt{(4-0)^{2}+(3-3)^{2}}=4$
68. Calculate the x and y differences, square, add, and root:
$d=\sqrt{(5-0)^{2}+(10-(2))^{2}}=\sqrt{25+144}=\sqrt{169}=13$.
69. Find the x and y differences, square, add, and root:
$d=\sqrt{(7-4)^{2}+(-1-3)^{2}}=\sqrt{9+16}=\sqrt{25}=5$.
70. To calculate the distance, we use the distance formula:
$d=\sqrt{(10-2)^{2}+(-9-6)^{2}}=\sqrt{64+225}=\sqrt{289}=17$.
71. Calculate x and y differences, square, add, and root:
$d=\sqrt{(6-3)^{2}+(-1-3)^{2}}=\sqrt{9+16}=\sqrt{25}=5$.
72. Find the x and y differences, square, add, and root:
$d=\sqrt{(14-(-2))^{2}+(18-(-12))^{2}}=\sqrt{256+900}=\sqrt{1,156}=34$.
73. Find x and y differences, square, add, and root:
$d=\sqrt{(12-2)^{2}+(22-(-2))^{2}}=\sqrt{100+576}=\sqrt{676}=26$.

Chapter

4
 Linear Functions

Math topics in this chapter:
\square Finding Slope
\square Writing Linear Equations
\square Graphing Linear Inequalities
\square Write an Equation from a Graph
\square Slope-intercept Form and Point-slope Form
\square Write a Point-slope Form Equation from a Graph
\square Find x - and y -intercepts in the Standard Form of Equation
\square Graph an Equation in the Standard Form
\square Equations of Horizontal and Vertical Lines
\square Graph a Horizontal or Vertical Line
\square Graph an Equation in Point-Slope Form
\square Equation of Parallel or Perpendicular Lines
\square Compare Linear Function's Graph and Linear Equations
\square Graphing Absolute Value Equations
\square Two-variable Linear Equation Word Problems

Practices

Find the slope of each line.

$y=x-5$
$y=2 x+6$

1) $y=-5 x-8$

Solve.

Line through $(2,6)$ and $(5,0)$
Line through $(8,0)$ and $(-4,3)$
Line through $(-2,-4)$ and $(-4,8)$

What is the equation of a line with slope 4 and intercept 16 ?
7)

What is the equation of a line with slope 3 and passes through point
8) $(1,5)$? \qquad
9)

What is the equation of a line with slope -5 and passes through point $(-2,7)$? \qquad
10) The slope of a line is -4 and it passes through point $(-6,2)$. What is the
11) equation of the line? \qquad
The slope of a line is -3 and it passes through point $(-3,-6)$. What is the equation of the line? \qquad
13)

Sketch the graph of each linear inequality.
$y>4 x+2$

$$
y<-2 x+5
$$

Write an equation of each of the following lines in slopeintercept from.

Find the equation of each line.
16) Through: $(6,-6)$, slope亦 -2

Point-slope form: \qquad
Slope-intercept form: \qquad

Through: $(-7,7)$, slope $=4$ Point-slope form: \qquad
Slope-intercept form: \qquad

Write equation of the line in point-slope form.
18)
19)

Find the x - intercept of each line.
$21 x-3 y=-18$
$20 x+20 y=-10$
$8 x+6 y=16$
$2 x-4 y=-12$

2 Graph each equation.
 20)

21) $4 x-5 y=40$
22)

22)
23)
25)

$$
9 x-8 y=-72
$$

2. Find the equation of the following lines.

Write an equation for the horizontal line that passes through $(3,-5)$.
Write an equation for the horizontal line that passes through $(-4,7)$.
Write an equation for the vertical line that passes through $(4,0)$.
Write an equation for the vertical line that passes through $(0,-7)$.

Sketch the graph of each line.

Vertical line that passes through $(2,6)$.

Horizontal line that passes through $(5,3)$.

Graph each equation.

32)

$y-8=-2(x-1)$

Find the equation of each line with the given information.
34)

Through: $(4,4)$
Parallel to $y=-6 x+5$
Equation: \qquad
36)

Equation: \qquad
Through: $(2,0)$
Parallel to $y=x$
Equation: \qquad

Through: $(0,-4)$
Perp. to $y=2 x+3$
Equation: \qquad
Through: (-1,1)
Parallel to $y=2$
Equation: \qquad
Through: $(3,4)$
Perp. to $y=-x$
Equation: \qquad

Compare the slope of the function A and function B.
40)

Function A :

Function A :
41)
42)

Function $B: y=-2.5 x-1$

Function $B: y=2 x-1$

Graph each equation.

$$
y=-|x|-1
$$

$$
y=-|x-3|
$$

Solve.

45)
46)

John has an automated hummingbird feeder. He fills it to capacity, 8 fluid ounces. It releases 1 fluid ounce of nectar every day. Write an equation that shows how the number of fluid ounces of nectar left, y, depends on the number of days John has filled it, x.
The entrance fee to Park City is \$9. Additionally, skate rentals cost $\$ 4$ per hour. Write an equation that shows how the total cost, y, depends on the length of the rental in hours, x.

Answers

1) 1
2) 2
3) -5
4) -2
5) -6
6) $y=4 x+16$
7) $y=3 x+2$
8) $y=-5 x-3$
9) $y=-4 x-22$
10) $y=-3 x-15$
11) $y<-2 x+5$

12) $y=-\frac{3}{2} x+4$
13) $y=-\frac{5}{3} x$
14) Point-slope form: $y+6=-2(x-6)$ Slope-intercept form: $y=-2 x+6$
15) Point-slope form: $y-7=4(x+7)$

Slope-intercept form: $y=4 x+35$
18) $(y-2)=\frac{1}{2}(x-4)$
19) $(y-6)=(x+4)$
20) $-\frac{6}{7}$
21) $-\frac{1}{2}$
22) 2
23) -6
24)

26) $y=-5$
27) $y=7$

32)

25)

28) $x=4$
29) $x=0$
31)

33)

33) $y=-6 x+28$
34) $y=2 x-13$
35) $y=x-2$
36) $y=-\frac{1}{2} x-4$
37) $y=1$
38) $y=x+1$
34)The slope of function A is 1 and is lower that than the slope of function B (6).
35) Two functions are parallel.
36) Two functions are intersecting.

$$
y=-|x|-1
$$

43)

44)

$$
y=-|x-3|
$$

46) $y=4 x+9$

Answers and Explanations

1. This equation is already in the slope-intercept form, which is $y=m x+b$, where m is the slope. The slope here is the coefficient of x, so the slope is 1 .
2. Similarly, this is in slope-intercept form. The number in front of x tells you how steep the line is and in which direction it goes. Here, the slope is 2 , meaning for every step right on the x-axis, we go 2 steps up on the y-axis.
3. In the slope-intercept form, the slope is the number before x. This time it's -5 , indicating a steep decline; for each step right, it goes 5 steps down.
4. Here we have two points, so we'll use the slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. That gives us $m=\frac{0-6}{5-2}=-\frac{6}{3}=-2$.
5. Here, we find the slope with the formula: $=\frac{3-0}{-4-8}=\frac{3}{-12}=-\frac{1}{4}$.
6. Using the slope formula again, we calculate: $m=\frac{8-(-4)}{-4-(-2)}=\frac{12}{-2}=-6$.
7. Plugging these values into the slope-intercept form $y=m x+b$, where m is the slope and b is the y-intercept, we get $y=4 x+16$.
8. First, use the slope and point to find the y-intercept (b) with the formula $y=$ $m x+b$. Plug in the values: $5=3(1)+b$, so $b=2$. The equation is $y=3 x+2$.
9. We apply the point to find $b: 7=-5(-2)+b$, simplifying to $7=10+b$, which means $b=-3$. The line's equation is $y=-5 x-3$.
10. Insert the point into the formula: $2=-4(-6)+b$ gives us $2=24+b$, leading to $b=-22$. The line's equation is $y=-4 x-22$.
11. Use the point for $b:-6=-3(-3)+b$, which is $-6=9+b$, so $b=-15$. The equation of this line is $y=-3 x-15$.
12. Start with the related equation $y=4 x+2$ to find the intercepts. The y-intercept is where $x=0$, which is $(0,2)$. The x-intercept is where $y=0$; set $y=0$ and solve for x to get $x=-0.5$ (or $-\frac{1}{2}$). Now, plot these two points on your graph. Draw a dashed line through them to represent that points on the line aren't included (since it's a 'greater than' inequality). Then, shade above the dashed line because y is greater than $4 x+2$ on that side.

13. Begin with $y=-2 x+5$. The y-intercept is $(0,5)$, and for the x-intercept, set y to 0 and solve for x, giving $x=2.5$ (or $\frac{5}{2}$). Plot these points and draw a dashed line through them because it's a 'less than' inequality, and we don't include the line itself. Then shade below the dashed line. This shading indicates where y is less than $-2 x+5$.
14. To determine the slope, pick two points on the line. Let's choose the points $(0,4)$ and $\left(\frac{8}{3}, 0\right)$. Use the formula: $m=\frac{0-4}{\frac{8}{3}-0}=-4 \times \frac{3}{8}=-\frac{3}{2}$. The y-intercept is the
 point where the line crosses the y-axis. For the given line, the y-intercept is the y-coordinate of the point $(0,4)$. So, $b=4$. Using the slope and y-intercept, the equation of line is: $y=-\frac{3}{2} x+4$.
15. To determine the slope, pick two points on the line. Let's choose the points $(0,0)$ and $(-5,3)$. Use the formula: $m=\frac{0-(-5)}{0-3}=-\frac{5}{3}$. The y-intercept is the point where the line crosses the y-axis. For the given line, Only at the origin y is equal to 0 . So b is equal to 0 . Using the slope and y-intercept, the equation of line is: $y=-\frac{5}{3} x$.
16. Using the formula $y-y_{1}=m\left(x-x_{1}\right)$, where m is the slope and $\left(x_{1}, y_{1}\right)$ is the given point. $y+6=-2(x-6)$. To convert to slope-intercept form (which is of the form $y=m x+b$), we can simplify the point-slope form equation: $y=-2 x+6$.
17. Applying the same formula and using the point $(-7,7)$ and slope 4 :
$y-7=4(x+7)$. To rewrite in slope-intercept form, simplify the point-slope form equation: $y=4 x+35$.
18. To determine the slope (m) between these two points, use the slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Plugging points $(4,2)$ and $(2,1)$ in the formula: $m=\frac{2-1}{4-2}=\frac{1}{2}$. Using the point-slope formula $y-y_{1}=m\left(x-x_{1}\right)$ and the given point $(4,2)$:
$y-2=\frac{1}{2}(x-4)$.
19. To find the slope (m) between these two points, use the slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Plugging points $(-4,6)$ and $(-6,4)$ in the formula: $m=\frac{4-6}{-6-(-4)}=\frac{-2}{-2}=1$. Using the point-slope formula $y-y_{1}=m\left(x-x_{1}\right)$ and the given point $(-4,6): y-6=(x+4)$.
20. To find the x-intercept, set $y=0$ and solve for x.
$21 x=-18 \rightarrow x=\frac{-18}{21} \rightarrow x=-\frac{6}{7}$.
21. For the x-intercept, make $y=0$ and rearrange to get x on its own. $20 x=-10$.

Divide both sides by 20: $x=-\frac{10}{20}$. $x=-0.5$.
22. Finding the x-intercept requires letting y be zero. $8 x=16$. Divide each side by 8: $x=2$.
23. For the x-intercept, substitute y with zero. $2 x=-12$. Now, divide through by 2: $x=-6$.
24. To graph the equation $4 x-5 y=40$, let's find two points by choosing values for x and solving for y, and then plot these points on a graph. First point: Let $x=$ 0 , then the equation becomes $-5 y=40$. Solving for y gives $y=-8$. So, our first point is $(0,-8)$. Second point: Let $x=10$, then the equation becomes $40-5 y=40$. This simplifies to $-5 y=0$, hence $y=0$. Our second point is $(10,0)$. Plot these points $(0,-8)$ and $(10,0)$ on a graph, then draw a straight line through them. This line represents all solutions to the equation $4 x-5 y=$ 40.

25. For the equation $9 x-8 y=-72$, we'll also find two points: First point: Let $x=0$, then the equation becomes $-8 y=-72$. Solving for y gives $y=9$. So, our first point is $(0,9)$. Second point: Let $y=0$, then the equation becomes $9 x-0=-72$. This simplifies to $9 x=$ -72 , hence $y=-8$. Our second point is $(-8,0)$. Plot these points $(0,9)$ and $(-8,0)$ on a graph, and draw a line through them. This line represents all solutions to the equation $9 x-8 y=-72$.
26. For a horizontal line passing through $(3,-5)$, remember that in a horizontal line, the y-coordinate remains constant while the x-coordinate can change.
 So, every point on this line has a y-coordinate of -5 , no matter what the x coordinate is. The equation that represents this line is simply $y=-5$. This equation tells us that no matter what value x takes, y will always be -5 .
27. Similarly, a horizontal line passing through $(-4,7)$ maintains a constant y coordinate across all its points, which in this case is 7 . This is because a horizontal line doesn't climb or fall as it moves to the right or left. Thus, the equation of this line is $y=7$, indicating that the y-value remains at 7 for any value of x.
28. For the vertical line passing through $(4,0)$, focus on how in a vertical line, it's the x-coordinate that stays constant. Here, every point on the line will have an x-coordinate of 4 . Since vertical lines run up and down without moving left or right, the equation for this line is $x=4$. This equation means that x is always 4 , regardless of the y-value.
29. A vertical line passing through $(0,-7)$ keeps its x-coordinate constant. In this case, every point on the line has an x-coordinate of 0 . Vertical lines are like walls or edges that don't move forward or backward but extend infinitely up and down. Hence, the equation representing this line is $x=0$, which is actually the y-axis on a graph. It signifies that the line lies exactly at $x=0$, for any value of y.
30. To sketch the vertical line that passes through $(2,6)$, first understand that a vertical line means the x coordinate is constant. For this line, x is always 2, no matter what y is. This is represented by the equation $x=$ 2. To draw this, find the point on the x-axis where x is 2 . From this point, draw a straight line straight up and down (perpendicular to the x-axis). This line doesn't depend on the y-coordinate given in the point $(2,6)$; it will be the same vertical line whether it passes through $(2,6)$ or $(2,-3)$ or any point where x is 2 .

31. For the horizontal line passing through $(5,3)$, you need to know that in a horizontal line, the y-coordinate is the same everywhere. Here, y is always 3 , which is shown in the equation $y=3$. Start by locating the point on the y-axis where y is 3 . From there, draw a straight line that goes left and right (parallel to the x-axis). This line remains at height 3 above the x-axis all along, showing that for any x-coordinate, whether it's 5 or -2 or any other number, y is always 3 . The fact that the given point is $(5,3)$ simply confirms that this point lies on the line; the line itself extends infinitely in both
 directions.
32. To graph the equations, we need to rewrite them in a more familiar format and then plot points or use key features like slope and y-intercept.

For $y+3=-\frac{1}{2}(x-8)$. First, simplify the equation. Expand the right-hand side: $-\frac{1}{2}(x-8)=-\frac{1}{2} x+4$ (since $-\frac{1}{2}$ times -8 is 4). Next, bring the equation to the form $y=m x+b$ by isolating $y: y=-\frac{1}{2} x+4-3$ (subtract 3 from both sides). So, $y=-\frac{1}{2} x+1$. Plot the y-intercept $(0,1)$ on the graph. The x-intercept is $(2,0)$.
 Draw the line through these points.
33. Begin by expanding the equation: $-2(x-1)=$ $-2 x+2$. Rearrange it to get y on one side:
$y=-2 x+2+8$. Simplify it to $y=-2 x+10$. This is again in
$y=m x+b$ form, with a slope (m) of -2 and a y intercept (b) of 10 . Plot the y-intercept $(0,10)$. Then, plot the x-intercept (5,0). Draw the line through these points.
34. Parallel lines have the same slope. The slope of
 $y=-6 x+5$ is -6 . Using the point $(4,4)$ and the slope -6 in the point-slope form: $y-4=-6(x-4)$. Simplify to get the equation: $y=-6 x+28$.
35. Perpendicular lines have slopes that are negative reciprocals. The negative reciprocal of $-\frac{1}{2}$ is 2 . Use the point $(7,1)$ and the slope $2: y-1=2(x-7)$. Simplify to get the equation: $y=2 x-13$.
36. The slope of $y=x$ is 1 . Parallel lines have the same slope. Using the point $(2,0)$ and the slope $1: y-0=1(x-2)$. Simplify this equation: $y=x-2$.
37. The negative reciprocal of 2 (the slope of the given line) is $-\frac{1}{2}$. Use the point $(0,-4)$ and the slope $-\frac{1}{2}: y+4=-\frac{1}{2}(x-0)$. Simplify to get the equation:
$y=-\frac{1}{2} x-4$.
38. The slope of $y=2$ (a horizontal line) is 0 . Parallel lines have the same slope. Since the slope is 0 , the line is horizontal, and the equation is simply $y=1$.
39. The negative reciprocal of -1 (the slope of the given line) is 1 . Use the point $(3,4)$ and the slope $1: y-4=1(x-3)$. Simplify this equation. $y=x+1$.
40. For function A, we can determine the slope by finding two points on the line where it crosses the grid lines exactly and then calculate the rise over run. Two points are $(-5,0)$ and $(0,5)$. So, slope is: $m=\frac{5-0}{0-(-5)}=1$. For function B, the equation is given as $y=6 x-3$. In this linear equation format, $y=m x+b$, the coefficient of x is the slope. Therefore, the slope of function B is 6 . Comparing the slopes of function A and function B shows that function B has a steeper slope than function A. The slope of function A is 1 , while the slope of function B is 6
41. Let's calculate the slope of function A by choosing two points where the line crosses the grid exactly, then use the rise over run formula to find the slope. Two points are $(2.4,0)$ and $(0,6)$. So, slope is: $m=\frac{6-0}{0-2.4}=-2.5$. From the equation of function $B, y=-2.5 x-1$, we know that the slope is -2.5 . The slopes are the same, so the two functions are parallel.
42. For Function A, the slope can be calculated by finding two points on the line and using the formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Let's choose the points $(-2,3)$ and $(0,2)$. Calculate the slope m using the formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-3}{0-(-2)}=-\frac{1}{2}$.

The slope (m) of a linear function in the form $y=m x+b$ is the coefficient of x, which represents the rate of change of y with respect to x. For Function B, the slope is 2 , since that's the coefficient of x in the equation.

Considering that the product of the slope of function A and the slope of function B is equal to 1 , then the two functions are perpendicular to each other.
43. Start by understanding the absolute value function $|x|$. This function takes the input x and gives its positive magnitude. Now, let's consider the negative sign in front of the absolute value: $-|x|$. This means that whatever positive value the absolute value function returns, we make it negative. So, for $x>0,-|x|$ will be negative, and for $x<0,-|x|$ will be positive. The -1 at the end of the equation means that we shift the entire graph downward by 1 unit. To graph this equation, start by drawing the graph of $y=|x|$, which is a V-shaped graph centered at the origin $(0,0)$. Then, for all points above the x-axis, make the y-values negative (reflect them below the x -

axis) and shift the entire graph down by 1 unit. Your final graph should resemble an upside-down V shape with its vertex at $(0,-1)$.
44. Start by understanding the absolute value function $|x-3|$. This function takes the input x and subtracts 3 before taking its positive magnitude. So, if $x=5$, then $|x-3|=|5-3|=|2|=2$. Now, let's consider the negative sign in front of the absolute value: $-|x-3|$. Just like in the previous equation, this means that whatever positive value the absolute value function returns, we make it negative. To graph this equation, start with the graph of $y=|x-3|$. This is also a V -
 shaped graph, but it will be centered at $x=3$ because of the " $x-3$ " inside the absolute value. Now, for all points to the right of $x=3$, make the y-values negative (reflect them below the x-axis). Your final graph should look like an upside-down V shape, centered at $x=3$, with its vertex at $(3,0)$, and extending to the left side of the graph.
45. We know that the feeder starts with 8 fluid ounces of nectar, and each day, 1 fluid ounce is released. So, as the number of days, x, increases, the amount of nectar left, y, decreases. We can represent this relationship with the equation: $y=-x+8$.
46. The total cost, y, depends on two factors: the entrance fee, which is a fixed cost of $\$ 9$, and the skate rental cost, which is $\$ 4$ per hour. As the length of the rental in hours, x, increases, the rental cost increases proportionally. We can represent this relationship with the equation: $y=4 x+9$.

Chapter

5 Inequalities and System of Equations

Math topics in this chapter:

One-Step Inequalities
\square Multi-Step Inequalities
\square Compound Inequalities
\square Write a Linear Inequality from a Graph
\square Graph Solutions to Linear Inequalities
Solve Advanced Linear Inequalities in Two-Variables
\square Graph Solutions to Advanced Linear Inequalities

- Absolute Value Inequalities

V Systems of Equations
\square Find the Number of Solutions to a Linear Equation
V Write a System of Equations Given a Graph
\square Systems of Equations Word Problems
\square Solve Linear Equations Word Problems
\square Systems of Linear Inequalities
\square Write Two-variable Inequalities Word Problems

Practices

Solve each inequality and graph it.

$$
x-2 \geq-2
$$

1)

$$
2 x-3<9
$$

2)

Solve each inequality.

3) $x+13>4$
4) $x+6>5$
5) $-12+2 x \leq 26$
6)
7) $-2+8 x \leq 14$
8) $6+4 x \leq 18$
9) $\quad 4(x+3) \geq-12$
10)

$2(6+x) \geq-12$
$3(x-5)<-6$
19)

Solve each inequality.

$$
\begin{aligned}
& 5 x \leq 45 \text { and } x-11>-21 \\
& -7<x-9<8
\end{aligned}
$$

Write the slope-intercept from equation of the following graph.

22)
24)

Solve the following inequality and graph the solution.

$10+6 p \leq-2$
$-2 f+10 \geq 6$
$-r+8 \leq 4$
$1+3 p>7$

Solve each inequality.
27)
26)

$$
\begin{aligned}
& 8 x-3 \geq 4 y+2 \\
& 4 x-3 \geq 5 y+x
\end{aligned}
$$

28)
29)

$$
y \leq \frac{3}{2} x+4
$$

29)

Graph the solution of each inequality.

$$
7 x+3 \geq 1-2 x
$$

33)

$\frac{x+4}{-4}>8 x+2$
34)

Solve each inequality.
35)

$$
\begin{align*}
& |x|-4<17 \\
& 6+|x-8|>15
\end{align*}
$$

$$
\left|\frac{x}{2}+3\right|>6
$$

$$
\left|\frac{x+5}{4}\right|<7
$$

Solve each system of equations.
40) $\left\{\begin{array}{cl}-2 x+2 y=-4 & x= \\ 4 x-9 y=28 & y=\end{array}\right.$

$$
\begin{cases}x+8 y=-5 & x= \\ 2 x+6 y=0 & y=\end{cases}
$$

43)

$\left\{\begin{array}{cc}4 x-3 y=-2 & x= \\ x-y=3 & y=\end{array}\right.$
$\left\{\begin{array}{cc}2 x+9 y=17 & x= \\ -3 x+8 y=39 & y=\end{array}\right.$
46)

How many solutions does the following equation have?

45)

$$
\begin{aligned}
& 4 n=8+5 n \\
& 5-9 f=-9 f \\
& 0=3 z-3 z
\end{aligned}
$$

48)

$$
\begin{aligned}
& -9 x+2=-9 x \\
& 20+12 y=11 y \\
& 10 h-2=-4 h
\end{aligned}
$$

Write a system of equations for the following graph.
49)

50)

51)

S Solve each word problem.
The equations of two lines are $3 x-y=7$ and $2 x+3 y=1$. What is the value of x in the solution for this system of equations?

The perimeter of a rectangle is 100 feet. The rectangle's length is 10 feet less than 5 times its width. What are the length and width of the rectangle?

Solve each word problem.

A golf club charges $\$ 150$ to join the club and $\$ 15$ for every hour using the driving range. Write an equation to express the cost C in terms of h
53) hours playing tennis.

Susan is twice as old as Jane. In 4 years, Susan will be 24 years old. How old is Jane now?

A movie ticket costs $\$ 7$. Popcorn costs $\$ 3$ more than the ticket. If Alex bought 1 movie ticket and 1 popcorn, how much did he spend in total?

Solve each system of inequalities and graph them.

56)

$$
\left\{\begin{array}{c}
x+2 y \leq 3 \\
y-x \geq 0 \\
y \geq-2
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
x<3 \\
x+y>-2 \\
y-1 \leq x
\end{array}\right.
$$

Solve each word problem.

James used his first 2 tokens in Glimmer Arcade to play a Roll-andScore game. Then he played his favorite game, Balloon Bouncer, over and over until he ran out of tickets. Balloon Bouncer costs 4 tokens per
59) game and James started the game with a bucket of 38 tokens. Write an equation James can use to find how many games of Balloon Bouncer, g, he played.

Sara buys juice and soda for the party and wants to spend no more than $\$ 46$. The price of each bottle of soda is 3 dollars and each bottle of fruit juice is 1 dollar. Write the inequality in a standard form that describes this situation. Use the given numbers and variables below.
$x=$ the number of bottles of soda
$y=$ the number of bottles of juice

Answers

1)
2)

$$
x>-1
$$

4) $x \leq 19$
5) $x \leq 2$
6)

$x \leq 3$
7)
8) $x \geq-6$
9) $x \geq-12$
10)
11)
12) $x<-5$
13) $x \geq-9$
14) $x \geq-2$
15)

$$
x>-9
$$

$$
y>2 x+1
$$

21)

$$
y \leq \frac{3}{5} x+2
$$

22) $y<-\frac{1}{4} x-1$
23)

$$
y \geq-2 x-2
$$

24)
25)

$$
p \leq-2
$$

26)

$$
f \leq 2
$$

17) $x \geq-8$
18) $x>-6$
19) $x>-16$
20)

$$
x<2
$$

$$
-10<x \leq 9
$$

$$
2<x<17
$$

$$
\begin{aligned}
& x \geq 0 \\
& x<6
\end{aligned}
$$

$\left\{(x, y) \mid y \in R, x \geq \frac{4 y+5}{8}\right\}$
$\left\{(x, y) \mid y \in R, x \geq \frac{5 y+3}{3}\right\}$
29) $\left\{(x, y) \mid y \in R, x \geq \frac{2 y-8}{3}\right\}$
$\left\{(x, y) \mid y \in R, x \leq \frac{2 y+10}{5}\right\}$
31)
32)
33)
$x \geq-\frac{2}{9}$

$x<-\frac{4}{11}$
46)
34)

49)
35) $-21<x<21$
36)
37)
38)
53)
$x>17$ or $x<-1$
$x>6$ or $x<-18$
$-33<x<23$
50)
51)
52)
$C=15 h+150$
55)
$x=-2, y=-4$
$x=3, y=-1$
$x=-11, y=-14$
$x=-5, y=3$
One solution
No solution
Infinitely solutions
No solution
One solution
One solution
$\left\{\begin{array}{c}y=-3 x-7 \\ y=x+9\end{array}\right.$
$\left\{\begin{array}{c}2 x+y=3 \\ -x+3 y=4\end{array}\right.$
$x=2$
10, 40

10
\$17

$$
\left\{\begin{array}{c}
y \leq-\frac{1}{2} x+\frac{3}{2} \\
y \geq x \\
y \geq-2
\end{array}\right.
$$

56)

$$
\left\{\begin{array}{c}
x<3 \\
y>-x-2 \\
y \leq x+1
\end{array}\right.
$$

57)
58)

$4 g+2=38$

59)
$3 x+y \leq 46$

Answers and Explanations

1. To solve this inequality, we want to isolate x on one side. Here are the steps: Add 2 to both sides of the inequality: $x-2+2 \geq-2+2$. This simplifies to $x \geq 0$, because $-2+2=0$. To graph this inequality, you draw a number line, make a solid circle on 0 to show that 0 is included in the solution (because it's "greater than or equal to"), and shade all the numbers to the right of 0 to indicate that all those numbers are part of the solution.

2. Solving this inequality is about finding the range of x values that make the inequality true: first, add 3 to both sides to cancel out the $-3: 2 x-3+3<9+3$. This gives us $2 x<12$. Now, divide both sides by 2 to find the value of $x: \frac{2 x}{2}<\frac{12}{2}$. We end up with $x<6$. For graphing this inequality, you'd draw a number line and place an open circle on 6 (since 6 is not included in the solution) and shade all the numbers to the left of 6, indicating that the solution includes all numbers less than 6.

3. To find the value of x, we reduce the inequality. Subtract 13 from both sides: $x>4-13$, resulting in $x>-9$.
4. Here, we again simplify by moving 6 to the other side. So, $x>5-6$, giving $x>-1$.
5. Bring -12 to the other side, then divide the result by $2: 2 x \leq 38$, so $x \leq 19$.
6. Shift -2 to the right side of the inequality and then divide by 8 : $x \leq \frac{16}{8}$, simplifying to $x \leq 2$.
7. Move 6 across and divide by 4 to isolate $x \leq \frac{12}{4}$, which simplifies to $x \leq 3$.
8. Start by expanding the left side: $4 x+12 \geq-12$. Next, subtract 12 from both sides to isolate the term with $4 x \geq-24$. Finally, divide everything by 4 to solve for $x \geq-6$.
9. First, expand the left side: $12+2 x \geq-12$. Then, move 12 to the right side by subtracting it: $2 x \geq-24$. Divide by 2 to find $x \geq-12$.
10. Expand the multiplication: $3 x-15<-6$. Add 15 to both sides to bring x terms on one side: $3 x<9$. Divide by 3 to isolate $x<3$.
11. First, move 10 to the other side by subtracting it: $5 x<-25$. Then divide everything by 5 to get $x<-5$.
12. Expand the left side: $36+6 x \geq-18$. Subtract 36 from both sides: $6 x \geq-54$. Divide by 6 to solve for $x \geq-9$.
13. Expand the multiplication: $2 x-10 \geq-14$. Add 10 to both sides: $2 x \geq-4$. Divide by 2 to find $x: x \geq-2$.
14. Expand the left side: $6 x+24<-12$. Subtract 24 from both sides: $6 x<-36$. Divide by 6 to isolate $x<-6$.
15. First, expand the left side: $3 x-24 \geq-48$. Add 24 to both sides: $3 x \geq-24$. Finally, divide by 3: $x \geq-8$.
16. Simplify the left side: $-6+4 x>-30$. Add 6 to both sides: $4 x>-24$. Divide by 4 to solve for $x: x>-6$.
17. First, expand the multiplication: $4+4 x>-60$. Subtract 4 from both sides: $4 x>-64$. Divide everything by 4 to find $x>-16$.
18. Expand the multiplication: $-12-6 x>-24$. Add 12 to both sides: $-6 x>-12$. Divide by -6 and reverse the inequality sign: $x<2$.
19. For the first part, $5 x \leq 45$, divide both sides by 5 to isolate $x: x \leq 9$. For the second part, $x-11>-21$, add 11 to both sides to solve for x : $x>-10$. Combining these two, the solution is x values that satisfy both conditions, which is $-10<x \leq 9$.
20. This inequality can be split into two parts: $x-9>-7$ and $x-9<8$. For the first part, $x-9>-7$, add 9 to both sides: $x>2$. For the second part, $x-9<8$, again add 9 to both sides: $x<17$. The solution is the range of x that satisfies both parts: $2<x<17$.
21. The inequality is likely in the form of $y>m x+b$ or $y \geq m x+b$, where m is the slope of the line and b is the y-intercept. Given two points from the graph, $(0,1)$ and $(-0.5,0)$, we can first determine the slope of the line (m) using the slope formula: $m=\frac{0-1}{-0.5-0}=2$. The slope of the line (m) is 2 . Therefore, the equation of the line using the slope-intercept form $y=m x+b$ with the given y intercept at point $(0,1)$ is: $y=2 x+1$. The inequality will be $y>2 x+1$.
22. To create the inequality from the graph, we first need to determine the slope of the line, which tells us how steep the line is. Given two points from the graph, $(0,2)$ and $\left(-\frac{10}{3}, 0\right)$, we can first determine the slope of the line (m) using the slope formula: $m=\frac{0-2}{-\frac{10}{3}-0}=\frac{3}{5}$. Once we have the slope, we use it along with the y intercept to write the line's equation. The y-intercept is where the line crosses the y-axis, which in this case is at $y=2$ (the point $(0,2)$). Putting the slope and
y-intercept together, we get the equation of the line: $y=\frac{3}{5} x+2$. But for the inequality representing all the points in the shaded area below the line, it will be: $y \leq \frac{3}{5} x+2$.
23. To find the inequality, we first need to determine the slope of the line. Given the points $(0,-1)$ and $(-4,0)$, the slope is: $m=\frac{0-(-1)}{-4-0}=-\frac{1}{4}$. The y-intercept is where the line crosses the y-axis. For the point $(0,-1)$, the x-value is 0 , so this point is the y-intercept. Therefore, the equation of the line is $y=-\frac{1}{4} x-1$. The shading below the dashed line tells us that we are looking for values of y that are less than the values on the line, but not equal to them, because the line is not included in the solution set. Thus, the inequality representing the shaded region below the line is: $y<-\frac{1}{4} x-1$.
24. First, we find the slope of the line. We have two points: $(0,-2)$ and $(-1,0)$. The slope is $m=\frac{0-(-2)}{-1-0}=-2$. Next, we use the y-intercept to write the line's equation. The y-intercept is where the line hits the y-axis. Our line crosses at $(0,-2)$, so the y-intercept is -2 . In this case, the equation of the line is:
$y=-2 x-2$. The shaded area is above this line, the inequality is: $y \geq-2 x-2$.
25. To find the value of p, we need to isolate it on one side of the inequality. We start by subtracting 10 from both sides to get $6 p \leq-12$. Then, we divide both sides by 6 to find p. This will give us $p \leq-2$. The graph of this solution would show a number line with everything to the left of -2 shaded and a closed circle at -2 because p can also be equal to -2 .

26. Here, we want to find out what r can be. We'll subtract 8 from both sides to get $-r \leq-4$. Multiplying or dividing by a negative number flips the inequality sign, so when we multiply both sides by -1 to get r, the inequality sign flips, giving us $r \geq 4$. On the number line, we'd shade everything to the right of 4 and put a closed circle on 4 since r can be 4 as well.

27. To solve for f, we'll subtract 10 from both sides first, getting $-2 f \geq-4$. Next, we divide by -2 , which reverses the inequality direction, so we end up with $f \leq 2$. The graph for this would be similar to the first one, with a closed circle at 2 and shading to the left.

28. For this inequality, subtract 1 from both sides to isolate the term with p, giving us $3 p>6$. Dividing by 3 then gives us $p>2$. Since this is a strict inequality (not including the number 2), we'd draw an open circle at 2 on the number line and shade everything to the right of 2.

29. To solve for x, we need to get x by itself on one side. First, add 3 to both sides to eliminate the $-3: 8 x \geq 4 y+5$. Next, divide everything by 8 to find $x: x \geq \frac{4 y+5}{8}$. The final answer is: $\left\{(x, y) \mid y \in R, x \geq \frac{4 y+5}{8}\right\}$.
30. Here, we first want to get all the x-terms on one side, so subtract x from both sides: $3 x-3 \geq 5 y$. Now, add 3 to both sides: $3 x \geq 5 y+3$. Finally, divide by 3 to solve for $x: x \geq \frac{5 y+3}{3}$. The final answer is: $\left\{(x, y) \mid y \in R, x \geq \frac{5 y+3}{3}\right\}$.
31. To solve for x, we need to reverse the operations affecting x. First, subtract 4 from both sides to get rid of the 4 next to $x: y-4 \leq \frac{3}{2} x$. Now, multiply everything by $\frac{2}{3}$ to isolate $x: x \geq \frac{2 y-8}{3}$. The final answer is: $\left\{(x, y) \mid y \in R, x \geq \frac{2 y-8}{3}\right\}$.
32. Begin by adding $2 y$ to both sides to move the y-term to the other side:
$5 x \leq 10+2 y$. Then, divide by 5 to solve for $x: x \leq \frac{2 y+10}{5}$. The final answer is: $\left\{(x, y) \mid y \in R, x \leq \frac{2 y+10}{5}\right\}$.
33. First, we'll collect all the x-terms on one side by adding $2 x$ to both sides:
$9 x+3 \geq 1$. Next, we'll move the constant term (3) to the other side by subtracting 3 from both sides: $9 x \geq-2$. Then, divide by 9 to isolate $x: x \geq-\frac{2}{9}$. To
graph this, we'll draw a number line, place a closed dot on $-\frac{2}{9}$, and shade to the right, indicating that x can be any number greater than or equal to $-\frac{2}{9}$.

34. We want to isolate x, so multiply both sides by -4 , which will reverse the inequality because we're multiplying by a negative: $x+4<-32 x-8$. Now, get all x-terms to one side by adding $32 x$ to both sides: $33 x+4<-8$. Subtract 4 from both sides to have only x-terms on one side: $33 x<-12$. Finally, divide by 33 to solve for $x: x<-\frac{12}{33}$, which simplifies to $x<-\frac{4}{11}$. For the graph, draw a number line, place an open dot on $-\frac{4}{11}$, and shade to the left, showing that x can be any number less than $-\frac{4}{11}$, but not equal to it.

35. First, add 4 to both sides to isolate the absolute value: $|x|<21$. The inequality now says the distance of x from 0 is less than 21 . This means x can be less than 21 and greater than -21 . So, we have two inequalities: $x<21$ and $x>-21$, which we can write together as $-21<x<21$.
36. Subtract 6 from both sides first: $|x-8|>9$. This means the distance from x to 8 is more than 9 . This leads to two scenarios: $x-8>9$, which simplifies to $x>17$, or $x-8<-9$, which simplifies to $x<-1$.
37. The absolute value being greater than 6 means the expression inside is either more than 6 units away from zero on the positive side or less than -6 on the negative side. Splitting into two cases, we get $\frac{x}{2}+3>6$, which simplifies to $x>6$, or $\frac{x}{2}+3<-6$, which simplifies to $x<-18$.
38. This tells us that the quantity $\frac{(x+5)}{4}$ is less than 7 units away from zero in both the positive and negative directions. We consider two inequalities:
$\frac{(x+5)}{4}<7$, which simplifies to $x<23$, and $\frac{(x+5)}{4}>-7$, which simplifies to $x>-33$. So, the solution to this inequality is $-33<x<23$.
39. We can multiply the first equation by 2 to align the coefficients of x for elimination. This gives us $-4 x+4 y=-8$ and $4 x-9 y=28$. Adding these equations eliminates x, resulting in $-5 y=20$, and solving for y gives $y=-4$.

Substituting $y=-4$ into one of the original equations and solving for x gives $x=-2$. So, the solution is $x=-2, y=-4$.
40. We first multiply the first equation by -2 , which gives $-2 x-16 y=10$, and then add it to the second equation $2 x+6 y=0$. This eliminates x, resulting in $-10 y=10$, and solving for y gives $y=-1$. Substituting $y=-1$ back into one of the original equations, we find $x=3$. Therefore, the solution is $x=3, y=-1$.
41. We first multiply the second equation by 3 , getting $3 x-3 y=9$. Next, we subtract the second equation from the first one: $(4 x-3 y)-(3 x-3 y)=-2-9$. This simplifies to $x=-11$. Finally, we substitute $x=-11$ into one of the original equations, like $x-y=3$. Solving for y gives us $y=-14$.
42. We multiply the first equation by 3 and the second by 2 to align the coefficients of x for elimination. This results in $6 x+27 y=51$ and $-6 x+16 y=$ 78. Adding these equations eliminates x, leading to $43 y=129$, and solving for y gives $y=3$. Substituting $y=3$ into one of the original equations, we find $x=$ -5 . Thus, the solution is $x=-5, y=3$.
43. Subtract $4 n$ from both sides to get $0=8+n$. This simplifies to $-8=n$, indicating a unique solution, $n=-8$.
44. Add $9 f$ to both sides, resulting in $5=0$. This is a contradiction, as there's no value of f that can satisfy this equation. Hence, there are no solutions.
45. Simplifying the right side, $3 z-3 z$ becomes 0 , leading to $0=0$. This is a true statement for all values of z, meaning there are infinitely many solutions.
46. Subtract $-9 x$ from both sides, yielding $2=0$, which is a contradiction. Thus, this equation has no solutions.
47. Subtract $12 y$ from both sides, resulting in $20=-y$. This simplifies to $y=-20$, indicating a unique solution, $y=-20$.
48. Add 2 to both sides, getting $10 h=-2$. Dividing both sides by 10 gives $h=-0.2$, a unique solution, $h=-0.2$.
49. We need to find two points for each line to determine its slope and equation. For the green line: Point 1: $(-9,0)$ and point 2: $(0,9)$. For the red line: Point 1: $(-4,5)$ and point 2: $(0,-7)$. The slope of a line is calculated with the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. For the green line: $m=\frac{9-0}{0-(-9)}=1$. For the red line: $m=\frac{-7-5}{0-(-4)}=-3$. The equation of a line can be found using the point-slope formula $y-y_{1}=$ $m\left(x-x_{1}\right)$, where x_{1} and y_{1} is a point on the line. For the green line using point $(0,9):$
$y-9=1(x-0) \rightarrow y=x+9$. For the red line using point $(0,-7):$
$y+7=-3(x-0) \rightarrow y=3 x-7$. Thus, the system of equations representing the lines in the graph is: $\left\{\begin{array}{c}y=-3 x-7 \\ y=x+9\end{array}\right.$.
50. To write a system of equations for the lines shown in the graph, we need to determine the slope-intercept form of each line, which is $y=m x+b$, where m is the slope and b is the y-intercept of the line. For the red line, we use the two points given: $(0,3)$ and $(1.5,0)$. The slope is: $m=\frac{0-3}{1.5-0}=-2$. The y-intercept (b) is the y-value where the line crosses the y-axis, which is 3 for the red line. So, the equation for the red line is $y=-2 x+3$. For the green line, the points are $(-4,0)$ and $\left(0, \frac{4}{3}\right)$. Following the same method, the slope m is the change in y divided by the change in x. Here, the change in y is $\frac{4}{3}-0=\frac{4}{3}$, and the change in x is $0-(-4)=4$. So, the slope $m=\frac{\frac{4}{3}}{4}=\frac{1}{3}$. Since one of the points is on the y-axis $\left(0, \frac{4}{3}\right)$, this is also the y-intercept (b) for the green line. Thus, the equation for the green line is $y=\frac{1}{3} x+\frac{4}{3}$. Putting it all together, the system of equations for the two lines is: $\left\{\begin{array}{c}2 x+y=3 \\ -x+3 y=4\end{array}\right.$.
51. We manipulate the equations to align either the x or y coefficients. In this case, we can multiply the first equation by 3 and the second equation by 1 , which aligns the y coefficients. This manipulation gives us $9 x-3 y=21$ and $2 x+3 y=1$. Adding these equations together, $3 y$ is eliminated, leaving us with $11 x=22$. Solving for x by dividing both sides of the equation by 11 , we find that $x=2$.
52. The perimeter of a rectangle is the total distance around it, which is twice its length plus twice its width $(2 L+2 W)$. We're also told that the length (L) is 10 feet less than 5 times the width (W). So, $L=5 W-10$. Now, we use the perimeter formula: $2 L+2 W=100$. Replace L with $5 W-10$ in this formula, getting 2(5W $10)+2 W=100$. Simplifying this equation, we get $10 W-20+2 W=100$. Combine like terms to get $12 W-20=100$. Add 20 to both sides to isolate the variable term, resulting in $12 W=120$. Finally, divide both sides by 12 to find W, which is 10 feet. Knowing W, we can find L using $L=5 W-10$, which gives $L=40$ feet. So, the width is 10 feet, and the length is 40 feet.
53. The total cost C consists of a fixed part (the membership fee) and a variable part (the hourly fee multiplied by the number of hours). The equation is $C=$ $150+15 h$. Here, 150 represents the fixed membership fee, and $15 h$ represents the total cost of playing tennis for h hours at $\$ 15$ per hour.
54. To find Jane's current age, we first determine Susan's current age. If Susan is 24 years old in 4 years, she must be $24-4=20$ years old now. Since Susan is currently twice as old as Jane, we divide Susan's age by 2 to find Jane's age:
$\frac{20}{2}=10$. Therefore, Jane is currently 10 years old.
55. To find the total amount Alex spent on a movie ticket and popcorn, we add the costs of each item. The movie ticket costs $\$ 7$. The popcorn costs $\$ 3$ more than the ticket, so its price is $7+3=\$ 10$. Adding these together, $7+10=\$ 17$, we find that Alex spent a total of $\$ 17$.
56. We rearrange each inequality to solve for y. For $x+2 y \leq 3$, the rearranged form is $y \leq-\frac{1}{2} x+\frac{3}{2}$. For $y-x \geq 0$, it becomes $y \geq x$. The third inequality, $y \geq-2$, remains the same. We then plot these inequalities on a graph. The shaded region where all these conditions overlap is the solution.

57. Again, we rearrange each inequality for y. For $x+y>-2$, it becomes $y>-x-2$. For $y-1 \leq x$, the rearranged form is $y \leq x+1$. We plot these on the graph along with $x<3$. The solution is where the shaded regions of these inequalities intersect.
58. To write an equation for how many games of Balloon Bouncer James played at Glimmer Arcade, we need to account for all his tokens. James started with 38 tokens. He used 2 tokens for the Roll-and-
 Score game and the rest on Balloon Bouncer, which costs 4 tokens per game. If g represents the number of Balloon Bouncer games he played, the total tokens used for these games would be $4 g$ tokens. The total number of tokens used for both games is $4 g$ for Balloon Bouncer plus 2 for Roll-and-Score. Therefore, the equation that represents this situation is $4 g+2=38$.
59. Sara's budget for buying soda and juice is $\$ 46$. Each bottle of soda costs $\$ 3$, and each bottle of juice costs $\$ 1$. If x represents the number of soda bottles and y represents the number of juice bottles, the total cost can be represented by $3 x+y$. Since she wants to spend no more than $\$ 46$, the inequality to describe this situation is $3 x+y \leq 46$. Here, $3 x$ accounts for the total cost of the soda, and y for the juice, and the inequality ensures that the combined cost doesn't exceed her budget.

Chapter

Quadratic

Math topics in this chapter:
\square Solving a Quadratic Equations
\square Graphing Quadratic Functions
\square Solve a Quadratic Equation by Factoring
\square Transformations of Quadratic Functions
\checkmark Quadratic Formula and the Discriminant
\square Characteristics of Quadratic Functions: Equations
\square Characteristics of Quadratic Functions: Graphs
\square Complete a Function Table: Quadratic Functions
\square Domain and Range of Quadratic Functions: Equations
V Factor Quadratics: Special Cases
\square Factor Quadratics Using Algebra Tiles
\boxtimes Write a Quadratic Function from Its Vertex and Another Point

Practices

Solve each equation by factoring or using the quadratic formula.

1) $x^{2}-x-2=0$
2) $x^{2}-6 x+8=0$
3) $x^{2}-4 x+3=0$
4) $x^{2}+x-12=0$
5) $x^{2}+7 x-18=0$
6) $x^{2}-2 x-15=0$
7) $x^{2}+6 x-40=0$
8) $x^{2}-9 x-36=0$

Sketch the graph of each function.

9) $y=(x-4)^{2}-2$

10) $y=2(x+2)^{2}-3$

Solve each equation by factoring or using the quadratic formula.

11) $x^{2}-2 x-3=0$
12) $x^{2}+9 x+20=0$

2 State the transformations and sketch the graph of the following function.

13) $y=2(x-3)^{2}+1$

Find the answer to the equation.

14) $2 x^{2}-7 x+3=0$
15) $x^{2}+8 x-9=0$
16) $2 x^{2}+5 x-3=0$
17) $x^{2}+6 x+9=0$

S Solve.

18) Find the equation of the axis of symmetry for the parabola $y=x^{2}+7 x+3$.
19) Find the y-intercept of the parabola $x^{2}+25 x+7$.
20)Find the vertex of the parabola $y=x^{2}-4 x+3$.

Considering the following graph, determine the following:
21) vertex
22) axis of symmetry
23) y-intercepts

Complete the table.

24)

$g(t)=t^{2}+7$	
t	$g(t)$
-1	
0	
1	

25)

$f(p)=4 p^{2}$	
p	$f(p)$
-2	
0	
2	

2. Determine the domain and range of each function.

26) $y=x^{2}+5 x+6$
27) $y=x^{2}+3$
28) $y=-x^{2}+4$

Factor.

29) $25 x^{2}+20 x+4$
30) $9 x^{2}-1$
31) $3+6 x+3 x^{2}$
32) $b^{4}-36$

Use algebra tiles to factor.

33) $x^{2}-3 x+2$
34) $x^{2}+5 x+6$

Write each quadratic function as a vertex form.
35) A parabola opening or down has vertex $(0,0)$ and passes through $(8,-16)$.
36) A parabola opening up or down has vertex $(0,2)$ and passes through $(-2,5)$.

Answers

1) $x=2, x=-1$
2) $x=2, x=4$
3) $x=3, x=1$
4) $x=3, x=-4$
5) $y=(x-4)^{2}-2$

6) $\{3,-1\}$
7) The graph stretches vertically by a factor of 2 . Move 3 units to the right and 1 unit up.
8) $\{-4,-5\}$

9) $x_{1}=3, x_{2}=\frac{1}{2}$
10) $x_{1}=-9, x_{2}=1$
11) $x_{1}=-3, x_{2}=\frac{1}{2}$
12) $x_{1}=x_{2}=-3$
13) $x=-\frac{7}{2}$
14) 7
15) $(2,-1)$
16) $(3,-9)$
17)

$g(t)=t^{2}+7$	
t	$g(t)$
-1	8
0	7
1	8

22) 3
23) 0
24)

$f(p)=4 p^{2}$	
p	$f(p)$
-2	16
0	0
2	16

26) $D=\{x \mid x \in R\}, R=\{y \in R \mid y \geq$ $-0.25\}$
27) $D=\{x \mid x \in R\}, R=\{R \mid y \geq 3\}$
28) $D=\{x \mid x \in R\}, R=\{y \in R \mid y \leq 4\}$
29) $(x-1)(x-2)$

30) $y=-\frac{1}{4} x^{2}$
31) $(5 x+2)^{2}$
32) $(3 x-1)(3 x+1)$
33) $3(1+x)^{2}$
34) $\left(b^{2}+6\right)\left(b^{2}-6\right)$
35) $(x+2)(x+3)$

36) $y=\frac{3}{4} x^{2}+2$

Answers and Explanations

1. The factors of -2 that add up to -1 (the coefficient of x) are -2 and 1 . So, we rewrite the equation as $x^{2}-2 x+x-2=0$. Factoring by grouping, we get $x(x-2)+1(x-2)=0$, which simplifies to $(x-2)(x+1)=0$. Setting each factor to zero gives the solutions: $x=2$ and $x=-1$.
2. We look for factors of 8 that add up to -6 . These are -2 and -4 . Rewriting the equation as $x^{2}-4 x-2 x+8=0$, and factoring by grouping, we get $x(x-4)-$ $2(x-4)=0$. This simplifies to $(x-4)(x-2)=0$, giving the solutions: $x=4$ and $x=2$.
3. Here, we need factors of 3 that sum up to -4 . These factors are -1 and -3 . Rewriting the equation as $x^{2}-3 x-x+3=0$ and factoring by grouping, we get $x(x-3)-1(x-3)=0$. This factors into $(x-3)(x-1)=0$, yielding solutions: $x=3$ and $x=1$.
4. We need factors of -12 that add to 1 . These are 4 and -3 . Rewrite the equation as $x^{2}+4 x-3 x-12=0$. Factoring by grouping, we get $x(x+4)-3(x+4)=0$. This factors into $(x+4)(x-3)=0$, resulting in solutions: $x=-4$ and $x=3$.
5. Looking for factors of -18 that sum to 7 , we find 9 and -2 .

Rewrite as $x^{2}+9 x-2 x-18=0$. Factoring by grouping, we have $x(x+9)-$ $2(x+9)=0$. This factors into $(x+9)(x-2)=0$, giving solutions: $x=-9$ and $x=2$.
6. Factors of -15 that add up to -2 are -5 and 3 .

Rewrite as $x^{2}-5 x+3 x-15=0$. Factoring by grouping, we get $x(x-5)+3(x-$ $5)=0$. This factors into $(x-5)(x+3)=0$, resulting in solutions: $x=5$ and $x=$ -3 .
7. We need factors of -40 that sum to 6 . These are 10 and -4 .

Rewrite as $x^{2}+10 x-4 x-40=0$. Factoring by grouping, we have $x(x+10)-$ $4(x+10)=0$. This simplifies to $(x+10)(x-4)=0$, giving solutions: $x=-10$ and $x=4$.
8. Seek numbers that multiply to -36 and add to -9 . These are -12 and 3 .

Factor as $(x-12)(x+3)=0$. Solving $x-12=0$ and $x+$ $3=0$ gives $x=12$ and $x=-3$.
9. This graph represents a parabola. The basic shape of the parabola is $y=x^{2}$, which opens upwards. The term $(x-4)$

shifts this parabola 4 units to the right, as it changes the x-coordinate of the vertex. The " -2 " at the end lowers the parabola by 2 units, moving the vertex down. The vertex of this parabola is at $(4,-2)$, which is the lowest point since the parabola opens upwards.
10. This graph also represents a parabola. The "2" multiplying the square term causes the parabola to be narrower than the standard $y=x^{2}$. The term $(x+2)$ shifts the parabola 2 units to the left (opposite direction of the sign). The " -3 " moves the parabola down by 3 units, altering the y-coordinate of the vertex. The vertex of this parabola is at $(-2,-3)$, and it opens upwards, making the vertex the lowest point of the parabola.

11. For factoring, we need to find two numbers that multiply to -3 (the constant term) and add to -2 (the coefficient of x). These numbers are -3 and 1. So, we can rewrite the equation as $(x-3)(x+1)=0$. Now, apply the zeroproduct property, which states that if a product equals zero, then at least one of the factors must be zero. Setting each factor equal to zero gives us $x-3=0$ and $x+1=0$, leading to solutions $x=3$ and $x=-1$.
12. To factor this, look for two numbers that multiply to 20 (the constant term) and add up to 9 (the coefficient of x). These numbers are 4 and 5 . So, we can rewrite the equation as $(x+4)(x+5)=0$. Applying the zero-product property, we set each factor to zero: $x+4=0$ and $x+5=0$. This gives us the solutions $x=-4$ and $x=-5$.
13. The term $(x-3)$ indicates a horizontal shift of the basic parabola. It moves the parabola 3 units to the right. The coefficient 2 in front of the square term indicates a vertical stretch. This makes the parabola narrower than the standard parabola $y=x^{2}$. There's an upward shift of 1 unit, as indicated by the $"+1$ " in the function. This moves the entire graph up.

14. Here, $a=2, b=-7$, and $c=3$. Substituting these into the formula gives $x_{1,2}=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 \times 2 \times 3}}{2 \times 2}$. Solving this, we get two solutions: $x_{1}=\frac{1}{2}$ and $x_{2}=3$.
15. Coefficients are $a=1, b=8$, and $c=-9$. Plugging these into the quadratic formula: $x_{1,2}=\frac{-8 \pm \sqrt{8^{2}-4 \times 1 \times(-9)}}{2 \times 1}$. This results in the roots $x_{1}=-9$ and $x_{2}=1$.
16. Coefficients: $a=2, b=5, c=-3$. Apply the formula: $x_{1,2}=\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times(-3)}}{2 \times 2}$. The solutions are $x_{1}=-3$ and $x_{2}=\frac{1}{2}$.
17. Coefficients: $a=1, b=6, c=9$. Using the formula $x_{1,2}=\frac{-6 \pm \sqrt{6^{2}-4 \times 1 \times 9}}{2 \times 1}$. Here, the discriminant (part under the square root) is zero, indicating one real root, $x_{1,2}=-3$.
18. The axis of symmetry of a parabola in the form $a x^{2}+b x+c$ is given by $x=$ $-\frac{b}{2 a}$. Here, $a=1$ and $b=7$, so the axis of symmetry is $x=-\frac{7}{2 \times 1}=-\frac{7}{2}$. This means the line $x=-\frac{7}{2}$ is the axis of symmetry for the parabola.
19. The y-intercept of a parabola is found when $x=0$. Substituting $x=0$ in the equation gives the y-intercept. For $y=x^{2}+25 x+7$ substituting $x=0$ yields $y=0^{2}+(25 \times 0)+7=7$. Therefore, the y-intercept of this parabola is $y=7$.
20. The vertex of a parabola $y=a x^{2}+b x+c$ is at $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right.$), where $f(x)$ is the parabola's equation. Here, $a=1$ and $b=-4$, so the x-coordinate of the vertex is $x=-\frac{-4}{2 \times 1}=2$. Substituting $x=2$ into the parabola's equation gives the y-coordinate: $y=2^{2}-4 \times 2+3=-1$. Therefore, the vertex of this parabola is at the point $(2,-1)$.
21. The vertex is the point at the bottom of the parabola since it opens upwards. It's at the "tip" or the lowest point on the graph. You can locate the vertex by finding the point where the parabola turns around, which, on this graph, appears to be at the $(3,-9)$.
22. The axis of symmetry is the vertical line that goes through the vertex and splits the parabola into two symmetrical halves. In this graph, the axis of symmetry would be $x=3$.
23. The y-intercept is where the parabola crosses the y-axis. From the graph, it's clear that this parabola crosses the y-axis at the point $(0,0)$. There are no other points where the parabola crosses the y-axis.
24. To complete the table for each function, you substitute the given values of t into the functions and calculate the

$g(t)=t^{2}+7$	
t	$g(t)$
-1	8
0	7
1	8

25. When $p=-2, f(p)=4(-2)^{2}=4 \times 4=16$. When $p=0$, $f(p)=4(0)^{2}=4 \times 0=0$. When $p=2, f(p)=4(2)^{2}=4 \times 4=$ 16.

$f(p)=4 p^{2}$	
p	$f(p)$
-2	16
0	0
2	16

26. The domain of any quadratic function, like this one, is all real numbers because there's no restriction on the values that x can take. Let's calculate the vertex to determine the minimum value of y, which will help us in determining the range. The vertex of function is at $(-2.5,-0.25)$. This means the lowest point on the graph of the function is at $y=-0.25$. Therefore, the range is $y \geq-0.25$.
27. Similar to the first function, this is also a quadratic function, where x can be any real number. There's no number that doesn't work in the equation. So, the domain is all real numbers. This equation also makes a U-shaped curve. The lowest point is the vertex. Here, the vertex is simpler because there's no x term to shift it left or right. So, the lowest point is just when $x=0$, giving $y=3$. Therefore, the smallest value y can be is 3 , and it increases from there. The range is $y \geq 3$.
28. As with the other quadratic functions, there are no limitations on x here. You can choose any number for x. Hence, the domain is all real numbers. This function is also a parabola, but it opens downwards (because of the negative sign before x^{2}). The highest point on the curve is the vertex. Since there's no x term, the vertex is at $x=0$, giving $y=4$. That's the highest point, and the curve goes down from there. So, the range is all values of y that are less than or equal to 4, written as $y \leq 4$.
29. This equation can be factored by looking for a perfect square trinomial. A perfect square trinomial is formed when a binomial is squared. We notice that $(5 x)^{2}=25 x^{2}, \quad 2 \times 5 x \times 2=20 x$, and $2^{2}=4$. Therefore, $25 x^{2}+20 x+4$ can be factored as $(5 x+2)^{2}$.
30. This equation is a difference of squares. Here, $9 x^{2}$ is $(3 x)^{2}$ and 1 is 1^{2}. So, $9 x^{2}-1$ factors to $(3 x+1)(3 x-1)$.
31. It's often easier to factor when the terms are in descending order of their exponents. Rearranging the equation gives us $3 x^{2}+6 x+3$. Next, we look for common factors. In this case, each term is divisible by 3. Factoring out 3, we get: $3\left(x^{2}+2 x+1\right)$. Now, we need to factor the quadratic expression inside the parentheses. The expression $x^{2}+2 x+1$ is a perfect square trinomial, which factors into the square of a binomial. The pattern for a perfect square trinomial
is $a^{2}+2 a b+b^{2}=(a+b)^{2}$. Here, $x^{2}=(x)^{2}, 2 \times x \times 1=2 x$, and $1^{2}=1$. Putting it all together, the factored form of $3+6 x+3 x^{2}$ is: $3(x+1)^{2}$.
32. In $b^{4}-36, b^{4}$ is a perfect square because it can be written as $\left(b^{2}\right)^{2}$ and 36 is also a perfect square because it can be written as 6^{2}. Applying the difference of squares formula, we rewrite $b^{4}-36$ as $\left(b^{2}+6\right)\left(b^{2}-6\right)$.
33. For $x^{2}-3 x+2$, imagine a set of tiles representing $x^{2},-x$ and +1 . You need to arrange these tiles into a rectangle. The tiles for x^{2} form the large square, the $-x$ tiles are rectangles, and +1 tiles are small squares. The goal is to create a rectangle where one side is made up of x tiles and the other side with constant number tiles. For this expression, you'll use one x^{2} tile, three $-x$ tiles, and two +1 tiles. The
 arrangement that forms a rectangle is one that makes two groups: $(x-1)$ and $(x-2)$. So, $x^{2}-3 x+2$ factors into $(x-1)(x-2)$.
34. For $x^{2}+5 x+6$ use the same method. This time, you have one x^{2} tile, five $+x$ tiles, and six +1 tiles. Arrange these to form a rectangle. The setup that works is creating two groups: $(x+2)$ and $(x+3)$. So, $x^{2}+5 x+6$ factors into $(x+2)(x+3)$.
35. The vertex form of a quadratic function is $y=a(x-h)^{2}+$
 k, where (h, k) is the vertex. For a parabola with vertex $(0,0)$, the equation simplifies to $y=a x^{2}$. We need to find the value of a. We know the parabola passes through $(8,-16)$, so we substitute these values into the equation to find a. Substituting $x=8$ and $y=-16$ gives $-16=64 a$.

Solving for a give $a=-\frac{16}{64}=-\frac{1}{4}$. So, the equation in vertex form is $y=-\frac{1}{4} x^{2}$.
36. Starting with the vertex form $y=a(x-h)^{2}+k$, we substitute the vertex $(0,2)$, yielding $y=a(x-0)^{2}+2$ or $y=a x^{2}+2$. To find a, we use the point $(-2,5)$. Substituting $x=-2$ and $y=5$ gives $5=a(-2)^{2}+2$, which simplifies to $5=4 a+$ 2. Solving for a result in $a=\frac{3}{4}$. Therefore, the quadratic function in vertex form is $y=\frac{3}{4} x^{2}+2$.

Chapter

7 Polynomials

Math topics in this chapter:
∇ Simplifying Polynomials
\square Adding and Subtracting Polynomials
\square Add and Subtract Polynomials Using Algebra Tiles
V Multiplying Monomials
Multiplying and Dividing Monomials
V Multiplying a Polynomial and a Monomial
V Multiply Polynomials Using Area Models
Multiplying Binomials
V Multiply two Binomials Using Algebra Tiles
\square Factoring Trinomials
Factoring Polynomials
\square Use a Graph to Factor Polynomials
Factoring Special Case Polynomials

- Add Polynomials to Find Perimeter

Practices

Simplify each polynomial.

$$
\begin{aligned}
& 3(6 x+4)= \\
& 5(3 x-8)=
\end{aligned}
$$

1)

$$
x(7 x+2)+9 x=
$$

2)
3)

$$
6 x(x+3)+5 x=
$$

)

4

Add or subtract polynomials.

$$
\left(x^{2}+3\right)+\left(2 x^{2}-4\right)=
$$

6)
7)

$6 x(3 x+1)-5 x=$ $x(3 x-4)+3 x^{2}-6=$

$$
\left(3 x^{2}-6 x\right)-\left(x^{2}+8 x\right) \stackrel{13}{=}
$$

$\left(4 x^{3}-3 x^{2}\right)+\left(2 x^{3}-5 x_{5}^{2}\right)=$
$\left(9 x^{3}+3 x\right)-\left(6 x^{3}-4 x\right)=$
11)

$$
\left(6 x^{3}-7 x\right)-\left(5 x^{3}-3 x\right)^{6}=
$$

$$
\left(7 x^{3}-5 x\right)-\left(3 x^{3}+5 x\right)=
$$

Use algebra tiles to simplify polynomials.

17)
18) $\left(2 x^{2}-3 x+3\right)-\left(x^{2}-x-1\right)$

$$
\left(2 x^{2}+2 x+5\right)+\left(x^{2}+2 x+1\right)
$$

19)
20)

Find the products.
25)
21) $3 x^{2} \times 8 x^{3}=$
26)
27)
28)
$\left(-7 x^{3} y z\right) \times\left(3 x y^{2} z^{4}\right)=$
$-2 a^{5} b c \times 6 a^{2} b^{4}=$
$9 u^{3} t^{2} \times(-2 u t)=$
$12 x^{2} z \times 3 x y^{3}=$
$11 x^{3} z \times 5 x y^{5}=$
$-6 a^{3} b c \times 5 a^{4} b^{3}=$
$-4 x^{6} y^{2} \times(-12 x y)=$

Simplify each expression.

$$
\begin{array}{ll}
\left(7 x^{2} y^{3}\right)\left(3 x^{4} y^{2}\right)= & \frac{42 x^{4} y^{2}}{6 x^{3} y}= \\
\left(6 x^{3} y^{2}\right)\left(4 x^{4} y^{3}\right)= & \frac{49 x^{5} y^{6}}{7 x^{2} y}=
\end{array}
$$

29)
30)

$$
\left(10 x^{8} y^{5}\right)\left(3 x^{5} y^{7}\right)=
$$

31) $\quad\left(15 a^{3} b^{2}\right)\left(2 a^{3} b^{8}\right)=$
32)
33)

$\frac{63 x^{15} y^{10}}{9 x^{8} y^{6}}=$
35)
$\frac{35 x^{8} y^{12}}{5 x^{4} y^{8}}=$
32)
36)

Find each product.

$$
3 x(5 x-y)=
$$

37)
38)

$2 x(4 x+y)=$
$7 x(x-3 y)=$
40)
41)
42)
$x\left(2 x^{2}+2 x-4\right)=$
$5 x\left(3 x^{2}+8 x+2\right)=$
$7 x\left(2 x^{2}-9 x-5\right)=$

Use the area model to find each product.

43)

$$
3 x(x+2)
$$

44)

$$
(a-3)(2 a+2)
$$

Find each product.

48)
49)

$$
(x-3)(x+3)=
$$

47)

$$
(x-6)(x+6)=
$$

51)

$$
(x+10)(x+4)=
$$

52)

$(x-6)(x+7)=$
$(x+2)(x-5)=$
$(x-10)(x+3)=$

Use algebra tiles to simplify.
$(x+1)(x+6)$
$(2 x+1)(x-4)$

Factor each trinomial.

$$
\begin{aligned}
& x^{2}+6 x+8= \\
& x^{2}+3 x-10=
\end{aligned}
$$

$$
x^{2}-10 x+16=
$$

$$
2 x^{2}-10 x+12=
$$

$$
\text { 53) } x^{2}+2 x-48=
$$

$$
3 x^{2}-10 x+3=
$$

54)
55)

25 Factor each expression
$4 x^{2}-4 x-8$
$16 x^{2}+60 x-100$
59) $6 x^{2}+37 x+6$
61)

$$
4 x^{2}-17 x+4
$$

62)

Use a graph to factor the following polynomial.

63) $x^{2}-4$
64)

$-(x+2)^{2}$

Factor each completely.
65)

$$
36 x^{2}-121
$$

69)
70) $-36 x^{4}+4 x^{2}$

$$
\begin{equation*}
-36 x^{2}+400= \tag{70}
\end{equation*}
$$

$49 x^{2}-56 x+16=$
$1-x^{2}=$
$81 x^{4}-900 x^{2}=$

Find the perimeter.
72)

Answers

$$
18 x+12
$$

$$
15 x-40
$$

1) $\left.7 x^{2}+11 x \quad 7\right)$
2) $6 x^{2}+23 x$
3)
4)
5)
6) $18 x^{2}+x$ 10)
7) $\quad 6 x^{2}-4 x-6_{11)}$
8) $\quad x^{2}-2 x+4$ 12)

9) $\left.18 x^{7} \quad 32\right)$
10)
11)
12)
13) $\begin{array}{lll} & -21 x^{4} y^{3} z^{5} & 35) \\ \text { 24) } & -12 a^{7} b^{5} c & 36)\end{array}$
14)
15)
16)
17)
18)
19)

$48 x^{7} y^{3}$
42)
$21 x^{6} y^{5}$
$24 x^{7} y^{5}$
$\left.-8 a^{5} b^{4} \quad 33\right)$
2) 34)
5) $\quad-18 u^{4} t^{3} \quad$ 37)
38)
$36 x^{3} y^{3} z$
39)
$55 x^{4} y^{5} z$
40)
$-30 a^{7} b^{4} c$
$21 x^{6} y^{5}$
$24 x^{7} y^{5}$
$-2 x^{2}-24 x-5$
$10 x^{3}+18 x^{2}-8$
$-10 x^{2}-30 x+7$
$x^{3}+7 x^{2}-9$

$$
3 x^{2}-1_{13)}
$$

$3 x^{3}+7 x$
$\left.2 x^{2}-14 x^{4}\right)$
$4 x^{3}-10 x$

$$
\begin{array}{r}
15) \\
6 x^{3}-8 x^{2} \\
16)
\end{array}
$$

$$
x^{3}-4 x
$$

$x^{3}-4 x$
18)

$$
3 x^{2}+4 x+6
$$

$$
30 a^{6} b^{10}
$$

$7 x y$
$7 x^{3} y^{5}$
$7 x^{7} y^{4}$
44)
$7 x^{4} y^{4}$

$$
15 x^{2}-3 x y
$$

$8 x^{2}+2 x y$
$7 x^{2}-246 y$
$2 x^{3}+2 x^{2}-4 x$
$15 x^{3}+40 x^{2}+10 x$
$14 x^{3}-63 x^{2}-35 x$

$$
3 x
$$

$$
2 a^{2}-4 a-6
$$

$x^{2}-9$

$$
x^{2}-36
$$

$$
\text { « } \quad 0
$$

	$x^{2}+14 x+40$	$2 x^{2}-7 x-4$	$(x-8)(x-2)$
	$x^{2}+x-42$	- $\square, \square, \square$	$2(x-3)(x-2)$
	$x^{2}-3 x-10$		$(3 x-1)(x-3)$
47)	$x^{2}-7 x-30$		$4(x+1)(x-2)$
49)	$x^{2}+7 x+6$	$\square \square \square \square \square \square \square$	$(x+6)(6 x+1)$
50)	口19, \square	$\begin{gathered} 59) \\ (x+4)(x+2) \end{gathered}$	$4(x+5)(4 x-5)$
		$(x+5)(x y-2)$	$(x-4)(4 x-1)$
		$(x-6)^{(2)}(x+8)$	
	$= \pm 2 \quad 55)$	x	

63)

67)
68)

$$
(6 x-11)(6 x+11)
$$

71)
72)
73)

$$
4 x^{2}(1-3 x)(1+3 x)
$$

$$
4(10+3 x)(10-3 x)
$$

$$
(7 x-4)^{2}
$$

$$
(1+x)(1-x)
$$

$$
x--2
$$

$9 x^{2}(3 x+10)(3 x-10)$
$8 x+16$
$4 x+68$

Answers and Explanations

1. First, distribute the 3 to both $6 x$ and 4 . This means multiplying 3 by each term inside the parentheses. $3 \times 6 x$ gives $18 x$, and 3×4 gives 12 . So, the simplified form is $18 x+12$.
2. Here, you'll distribute 5 to $3 x$ and -8 . Multiplying 5 by $3 x$ gives $15 x$, and 5 times -8 gives -40 . Thus, the polynomial simplifies to $15 x-40$.
3. Start by expanding $x(7 x+2)$. Multiply x with $7 x$ to get $7 x^{2}$, and x with 2 to get $2 x$. Now, add $9 x$ to the expanded form. So, it becomes $7 x^{2}+11 x$.
4. Multiply $6 x$ by each term inside the parentheses (x and 3). This gives $6 x^{2}$ and $18 x$. Then, add $5 x$ to these. The result is $6 x^{2}+23 x$.
5. Distribute $6 x$ to $3 x$ and 1. You get $18 x^{2}$ and $6 x$. Subtracting $5 x$ from $6 x$ results in $18 x^{2}+x$.
6. Multiply x by $3 x$ and -4 , getting $3 x^{2}$ and $-4 x$. Add these to $3 x^{2}-6$. The simplified form is $6 x^{2}-4 x-6$.
7. Start by expanding $3 x(x+8)$, which gives $3 x^{2}$ and $24 x$. Now, subtract these from $x^{2}-5$. The result is $-2 x^{2}-24 x-5$.
8. First, expand $6 x(2 x+5)$ to get $12 x^{2}$ and $30 x$. Then, subtract these from $2 x^{2}+7$. You end up with $-10 x^{2}-30 x+7$.
9. Add the like terms. Here, x^{2} and $2 x^{2}$ are like terms, so they combine to $3 x^{2}$. The constants 3 and -4 also combine to give -1 . Thus, the simplified expression is $3 x^{2}-1$.
10. Subtract each term in the second polynomial from the corresponding term in the first. $3 x^{2}-x^{2}$ equals $2 x^{2}$, and $-6 x-8 x$ equals $-14 x$. So, the answer is $2 x^{2}-14 x$.
11. Combine like terms. $4 x^{3}$ and $2 x^{3}$ add up to $6 x^{3}$, and $-3 x^{2}$ and $-5 x^{2}$ add up to $-8 x^{2}$. The result is $6 x^{3}-8 x^{2}$.
12. Subtract the terms in the second polynomial from the first. $6 x^{3}-5 x^{3}$ is x^{3}, and $-7 x-(-3 x)$ simplifies to $-4 x$. The final expression is $x^{3}-4 x$.
13. Add like terms. $10 x^{3}$ has no like term, so it remains as is. $4 x^{2}$ and $14 x^{2}$ make $18 x^{2}$. The constant -8 stands alone. So, the simplified form is $10 x^{3}+18 x^{2}-8$.
14. Here, $4 x^{3}-3 x^{3}$ equals x^{3}. There's no like term for $-7 x^{2}$, so it's just subtracted, becoming $+7 x^{2}$. Finally, -9 has no like term, so it remains. The answer is $x^{3}+7 x^{2}-9$.
15. Subtract the second polynomial from the first. $9 x^{3}-6 x^{3}$ is $3 x^{3}$, and $3 x-(-4 x)$ simplifies to $7 x$. Thus, the result is $3 x^{3}+7 x$.
16. Subtract the terms in the second polynomial from the first. $7 x^{3}-3 x^{3}$ results in $4 x^{3}$, and
$-5 x-5 x$ equals $-10 x$. The final expression is $4 x^{3}-10 x$.
17. First, represent $2 x^{2}$ with two large squares, $-3 x$ with three negative long rectangles, and +3 with three small squares. Next, for $-\left(x^{2}-x-1\right)$, use one negative large square for $-x^{2}$, one positive long rectangle for $+x$, and one positive small square for +1 . Now, combine these tiles. The two large squares and one negative large square leave
 one large square $\left(x^{2}\right)$. The three negative rectangles and one positive rectangle leave two negative rectangles $(-2 x)$. The three small squares and one positive small square leave four small squares (+4). So, the simplified form is $x^{2}-2 x+4$.
18. Represent $2 x^{2}$ with two large squares, $2 x$ with two long rectangles, and +5 with five small squares. For $x^{2}+2 x+1$, use one large square, two long rectangles, and one small square. Combine these tiles. The
 two large squares and one large square make three large squares ($3 x^{2}$). The four long rectangles represent $4 x$. The five small squares and one small square make six small squares $(+6)$. The simplified expression is $3 x^{2}+4 x+6$.
19. Multiply the coefficients 3 and 8 to get 24. For the variables, add the exponents of x (2 and 3), resulting in x^{2+3}. So, the product is $24 x^{5}$.
20. First, multiply the coefficients 2 and 9, which equals 18 . Then, combine x^{4} and x^{3} by adding their exponents $(4+3)$, leading to x^{7}. Thus, the product is $18 x^{7}$.
21. Multiply the coefficients -4 and 2 to get -8 . Combine a^{4} and a (which is a^{1}) by adding exponents $(4+1=5)$ to get a^{5}. Similarly, combine b and b^{3} to get b^{4}. So, the result is $-8 a^{5} b^{4}$.
22. Here, multiply -7 and 3 to get -21 . For x^{3} and x, add their exponents $(3+1=$ 4) to get x^{4}. For y, combine y and y^{2} to y^{3}. Lastly, add the exponents of z and z^{4} $(1+4=5)$ to get z^{5}. The final product is $-21 x^{4} y^{3} z^{5}$.
23. Multiply -2 and 6 to get -12 . Combine a^{5} and a^{2} to get a^{7}, and b and b^{4} to get b^{5}. The c term remains as is. The result is $-12 a^{7} b^{5} c$.
24. Multiply 9 and -2 to get -18 . Add the exponents of u^{3} and u to get u^{4}, and the exponents of t^{2} and t to get t^{3}. So, the product is $-18 u^{4} t^{3}$.
25. Multiply the coefficients 12 and 3 to get 36 . Combine x^{2} and x to x^{3}. The y^{3} and z terms don't have like terms, so they are just appended. The result is $36 x^{3} y^{3} z$.
26. Here, multiply 11 and 5 to get 55 . Add the exponents of x^{3} and x to get x^{4}. Since z and y^{5} don't have like terms, they remain as is. The final product is $55 x^{4} y^{5} z$.
27. First, multiply the coefficients (numerical values) together: $-6 \times 5=-30$. Next, multiply the ' a ' terms: $a^{3} \times a^{4}$. When multiplying with the same base, add the exponents: $3+4=7$. So, this becomes a^{7}. Then, multiply the ' b ' terms: $b \times b^{3}$. Similarly, add the exponents for ' b ': $1+3=4$ (Note: ' b ' is b^{1}). This results in b^{4}. Lastly, the ' c ' term remains as is since there's no other ' c ' term to multiply with. Combine all these: $-30 a^{7} b^{4} c$.
28. Multiply the coefficients: $-4 \times(-12)=48$. Multiply the ' x ' terms: $x^{6} \times x$. Add their exponents: $6+1=7$. This gives x^{7}. Multiply the ' y ' terms: $y^{2} \times y$. The exponents add up to $2+1=3$, resulting in y^{3}. Combine these results: $48 x^{7} y^{3}$.
29. We multiply the coefficients (numbers) and add the exponents of like bases $(x$ and $y)$. So, $7 \times 3=21$ and $x^{2+4}=x^{6}, y^{3+2}=y^{5}$. The simplified expression is $21 x^{6} y^{5}$.
30. Multiply the coefficients (6 and 4) and add the exponents of x and y separately. $6 \times 4=24, x^{3+4}=x^{7}$, and $y^{2+3}=y^{5}$. This gives $24 x^{7} y^{5}$.
31. Here, multiply 10 and 3 , and add the exponents of x and $y .10 \times 3=30$, $x^{8+5}=x^{13}, y^{5+7}=y^{12}$. The result is $30 x^{13} y^{12}$.
32. Multiply 15 and 2, and add the exponents of a and $b .15 \times 2=30, a^{3+3}=a^{6}$, $b^{2+8}=b^{10}$. So, we get $30 a^{6} b^{10}$.
33. Divide the coefficients and subtract the exponents of x and y in the denominator from those in the numerator. $42 \div 6=7, x^{4-3}=x$, and $y^{2-1}=y$. The simplified form is $7 x y$.
34. Again, divide the coefficients and subtract the exponents.
$49 \div 7=7, x^{5-2}=x^{3}$, and $y^{6-1}=y^{5}$. This simplifies to $7 x^{3} y^{5}$.
35. Divide 63 by 9 and subtract the exponents of x and y in the denominator from the numerator. $63 \div 9=7, x^{15-8}=x^{7}, \quad y^{10-6}=y^{4}$. Thus, the simplified expression is $7 x^{7} y^{4}$.
36. Finally, divide 35 by 5 and subtract the exponents. $35 \div 5=7, x^{8-4}=x^{4}$, and $y^{12-8}=y^{4}$. The result is $7 x^{4} y^{4}$.
37. Multiply $3 x$ by each term inside the parentheses. First, $3 x \times 5 x=15 x^{2}$. (Multiplying the coefficients and adding the exponents of x). Next, $3 x \times(-y)=$ $-3 x y$ (multiplying the coefficient of x by y and keeping the sign). The product is $15 x^{2}-3 x y$.
38. Here, multiply $2 x$ by $4 x$ to get $8 x^{2}$ and $2 x$ by y to get $2 x y$. The result is $8 x^{2}+$ $2 x y$.
39. Distribute $7 x$ across x and $-3 y .7 x \times x=7 x^{2}$ and $7 x \times(-3 y)=-21 x y$. This results in $7 x^{2}-21 x y$.
40. Multiply x with each term inside the parentheses. $x \times 2 x^{2}=2 x^{3}, x \times 2 x=2 x^{2}$, and $x \times(-4)=-4 x$. Combine these for $2 x^{3}+2 x^{2}-4 x$.
41. Apply distribution: $5 x \times 3 x^{2}=15 x^{3}, 5 x \times 8 x=40 x^{2}$, and $5 x \times 2=10 x$. The product is $15 x^{3}+40 x^{2}+10 x$.
42. Here, multiply $7 x$ by $2 x$ to get $14 x^{3}, 7 x$ by $-9 x$ to get $-63 x^{2}$ and $7 x$ by -5 to get $-35 x$. This results in $14 x^{3}-63 x^{2}-35 x$.
43. Picture a rectangle with one side as $3 x$ and another as $x+2$. To find the area, divide the rectangle into two smaller rectangles, one with side $3 x$ and the other side x, and the second with side $3 x$ and the other side 2 . The area of the first smaller rectangle is $3 x \times x=3 x^{2}$. (multiplying the lengths of its sides). The area of the second smaller rectangle is $3 x \times 2=6 x$. The total area, or the product, is the sum of these areas: $3 x^{2}+6 x$.
$3 x$

44. Visualize this as a rectangle with sides $a-3$ and $2 a+2$. Split it into two smaller rectangles: one with sides $a-3$ and $2 a$, and the other with sides $a-3$ and 2. The area of the first is $2 a \times(a-3)=2 a^{2}-6 a$ (multiplying $2 a$ with each term in $a-$ 3). The area of the second is $2 \times(a-3)=2 a-6$ (multiplying 2 with each term in $a-3$). The total area, or product, is $2 a^{2}--3$ $6 a+2 a-6$, , which simplifies to $2 a^{2}-4 a-6$.
45. Multiply each term in the first binomial by each term in the second. This gives $x \times x=x^{2}, x \times 3=3 x,-3 \times x=-3 x$, and $-3 \times 3=-9$. Combining these, we get $x^{2}+3 x-3 x-9$. Notice that $3 x$ and $-3 x$ cancel out, so the final answer is $x^{2}-9$.
46. Following the same method, we multiply each term: $x \times x=x^{2}, x \times 6=6 x$, $-6 \times x=-6 x$, and $-6 \times 6=-36$. Combining gives $x^{2}+6 x-6 x-36$. Again, $6 x$ and $-6 x$ cancel out, resulting in $x^{2}-36$.
47. The product is found by multiplying: $x \times x=x^{2}, x \times 4=4 x, 10 \times x=10 x$, and $10 \times 4=40$. Adding these up gives $x^{2}+4 x+10 x+40$. Combining like terms ($4 x$ and $10 x$), we get $x^{2}+14 x+40$.
48. Multiply each term to get $x \times x=x^{2}, x \times 7=7 x,-6 \times x=-6 x$, and $-6 \times 7=-42$. Summing these gives $x^{2}+7 x-6 x-42$, which simplifies to $x^{2}+x-42$.
49. Multiply each term: $x \times x=x^{2}, x \times(-5)=-5 x, 2 \times x=2 x$, and $2 \times(-5)=-10$. Adding up these products gives $x^{2}-5 x+2 x-10$, , which simplifies to $x^{2}-3 x-$ 10.
50. The multiplication of each term yields $x \times x=x^{2}, x \times 3=3 x,-10 \times x=-10 x$, and $-10 \times 3=-30$. Combining these results in $x^{2}+3 x-10 x-30$, which simplifies to $x^{2}-7 x-30$.
51. Imagine a set of tiles representing $x+1$ and another set representing $x+6$. To find the product, we arrange these tiles to form a rectangle. The tiles for $x+1$ form one side of the rectangle, and the tiles for $x+6$ form the other. The area of the rectangle is the product. In this case, the area
 consists of $x \times x$ (which is x^{2}) $x \times 6$ (which is $6 x$), $1 \times x$ (which is x), and 1×6 (which is 6). Adding these areas together, we get $x^{2}+6 x+$ $x+6$, which simplifies to $x^{2}+7 x+6$.
52. Here, we use algebra tiles for $2 x+1$ and $x-4$ to form another rectangle. The area of this rectangle is found by multiplying the lengths of its sides. We have $2 x \times x$ (which gives $2 x^{2}$) $2 x \times-4$ (which is $-8 x$), $1 \times x$ (which is x), and $1 \times(-4)$ (which is -4). When these areas are combined, we get $2 x^{2}-8 x+x-4$, which simplifies to $2 x^{2}-7 x-4$.
53. We need two numbers that multiply to 8 and add up to
54. The numbers 2 and 4 fit this description, as $2 \times 4=8$ and $2+4=6$. So, the factorization is $(x+2)(x+4)$.
55. We look for numbers that multiply to -10 and add to 3 . The numbers 5 and -2 work here, since $5 \times(-2)=-10$ and $5+(-2)=3$. Thus, the factorization is $(x+5)(x-2)$.
56. We need numbers that multiply to -48 and add to 2 . The numbers 8 and -6 meet these criteria $(8 \times(-6)=-48$ and $8+(-6)=2)$. Therefore, it factors to $(x+8)(x-6)$.
57. Here, we seek numbers that multiply to 16 and add to -10 . The numbers -2 and -8 do the trick $(-2 \times(-8)=16$ and $-2+(-8)=-10)$. So, the factorization is $(x-2)(x-8)$.
58. First, notice all coefficients are even, so we can factor out a 2: $2\left(x^{2}-5 x+6\right)$. Now, factor $x^{2}-5 x+6$. We need numbers that add to -5 and multiply to 6 . These are -3 and -2 . The factored form is $2(x-3)(x-2)$.
59. Again, the coefficient of x^{2} is not 1 , so we look for numbers that multiply to $3 \times 3=9$ and add to -10 .

The numbers -9 and -1 fit $(-9 \times(-1)=9$ and $-9+(-1)=-10)$. Therefore, it factors to $(3 x-1)(x-3)$.
59. Initially, notice that each term in the expression is divisible by 4. Therefore, we factor out 4 , resulting in $4\left(x^{2}-x-2\right)$. Now, focus on factoring $x^{2}-x-2$. We need two numbers that add up to -1 (the coefficient of ' x ') and multiply to -2 (the constant term). These numbers are 1 and -2 .

Thus, the factored form is $4(x+1)(x-2)$.
60. This requires a bit more thought because the coefficients are larger. We seek two numbers that add up to 37 and multiply to $6 \times 6=36$. The numbers 36 and 1 fit this criterion. Place these numbers in the expression, giving $6 x^{2}+36 x+x+6$. Then, group and factor by grouping: $6 x(x+6)+1(x+6)$.

The final factored form is $(6 x+1)(x+6)$.
61. Start by noticing all terms are divisible by 4 . So, we factor out 4 , resulting in $4\left(4 x^{2}+15 x-25\right)$. Next, factor $4 x^{2}+15 x-25$. The numbers we're looking for are those that add to 15 and multiply to $4 \times(-25)=-100$. The suitable numbers are 20 and -5 . After rearranging and grouping, the factored form becomes $4\left(4 x^{2}+20 x-5 x-25\right)$ which simplifies to $4(4 x(x+5)-5(x+5))$, and finally to $4(4 x-5)(x+5)$.
62. This one also needs careful consideration. We want two numbers that add up to -17 and multiply to $4 \times 4=16$. These numbers are -16 and -1 . By splitting the middle term, we get $4 x^{2}-16 x-x+4$.

Grouping these gives $4 x(x-4)-1(x-4)$.
The expression then factors to $(4 x-1)(x-4)$.
63. The graph of this polynomial is a parabola opening upwards. The equation $x^{2}-4$ can be rewritten as $(x-2)(x+$ 2) using the difference of squares formula. Graphically, this parabola will intersect the x-axis at $x=2$ and $x=-2$. So, the factored form $(x-2)(x+2)$ directly corresponds to these intercepts, indicating the points where the graph touches the x-axis.

64. This is the graph of a downward-opening parabola because of the negative sign in front. The term $(x+2)^{2}$ means that the parabola is a shifted version of the basic x^{2} graph, moved 2 units to the left. For the roots, we set $(x+2)^{2}=0$. The only solution to this is $x=-2$, which means the graph touches the x-axis at this point only. Since it's a perfect square, the graph only touches the axis at one point, reflecting the fact that $x=-2$ is a repeated or double root.
65. This is a difference of squares, as both $36 x^{2}$ and 121
 are perfect squares. It can be rewritten as $(6 x)^{2}-11^{2}$. The factored form, using the difference of squares formula $a^{2}-b^{2}=(a-b)(a+b)$, is $(6 x-11)(6 x+11)$.
66. First, factor out the greatest common factor, which is $4 x^{2}$, giving $4 x^{2}\left(-9 x^{2}+1\right)$. Notice that $1-9 x^{2}$ is also a difference of squares. Thus, it factors further into $4 x^{2}(1-3 x)(1+3 x)$.
67. Firstly, we notice that both terms, $-36 x^{2}$ and 400, are divisible by 4 . However, since our first term is negative, we factor out -4 . This step changes the expression to $-4\left(9 x^{2}-100\right)$.

The next step involves recognizing that $9 x^{2}-100$ is a difference of two squares. In this case, $9 x^{2}$ is $3 x$ squared, and 100 is 10 squared. Therefore, $9 x^{2}-100$ factors into $(3 x+10)(3 x-10)$. Now, we substitute this back into our expression to get $-4(3 x+10)(3 x-10)$ or $4(10+3 x)(10-3 x)$.
68. This is a perfect square trinomial. It factors into a binomial squared. The square root of $49 x^{2}$ is $7 x$, and the square root of 16 is 4 . The factored form is $(7 x-4)^{2}$.
69. This is another difference of squares, where $a=1$ and $b=x$.

It factors to $(1-x)(1+x)$.
70. Start by factoring out the greatest common factor, which is $9 x^{2}$, yielding $9 x^{2}\left(9 x^{2}-100\right)$. The expression inside the parentheses is again a difference of squares. So, it factors to $9 x^{2}(3 x-10)(3 x+10)$.
71. To find the perimeter, you add all four sides: $P=(3 x+6)+(3 x+6)+(x+$ $2)+(x+2)$. Simplify by combining like terms:
$P=2(3 x+6)+2(x+2)=6 x+12+2 x+4=8 x+16$.
72. Add the three sides: $P=(x+16)+(x+16)+(2 x+36)$. Combine like terms to simplify: $P=2(x+16)+(2 x+36)=2 x+32+2 x+36=4 x+68$.

Chapter

Relations and Functions

Math topics in this chapter:

Practices

2. Evaluate each function.

1) $f(x)=x-2$, find $f(-1)$
2) $g(x)=2 x+4$, find $g(3)$
3) $g(n)=2 n-8$, find $g(-1)$
4) $h(n)=n^{2}-1$, find $h(-2)$
5) $f(x)=x^{2}+12$, find $f(5)$
6) $g(x)=2 x^{2}-9$, find $g(-2)$
7) $w(x)=2 x^{2}-4 x$, find $w(2 n)$
8) $p(x)=4 x^{3}-10$, find $p(-3 a)$

Perform the indicated operation.

9) $\begin{aligned} & g(x)=x-2 \\ & h(x)=2 x+6\end{aligned}$

Find: $(h+g)(3)$
10) $f(x)=3 x+2$
$g(x)=-x-6$
Find: $(f+g)(2)$
11) $f(x)=5 x+8$
$g(x)=3 x-12$
Find: $(f-g)(-2)$
12) $h(x)=2 x^{2}-10$
$g(x)=3 x+12$
Find: $(h+g)(3)$
13) $g(x)=12 x-8$
$h(x)=3 x^{2}+14$
Find: $(h-g)(x)$
14) $\overline{h(x)}=-2 x^{2}-18$
$g(x)=4 x^{2}+15$
Find: $(h-g)(a)$

2 Perform the indicated operation.

15) $\begin{aligned} g(x) & =x-5 \\ h(x) & =x+6\end{aligned}$
$h(x)=x+6$
Find: $(g . h)(-1)$
16) $f(x)=2 x+2$
$g(x)=-x-6$
Find: $\left(\frac{f}{g}\right)(-2)$
17) $\overline{f(x)=5 x}+3$
$g(x)=2 x-4$
Find: $\left(\frac{f}{g}\right)(5)$
18) $h(x)=x^{2}-2$
$g(x)=x+4$
Find: (g.h)(3)
19) $\overline{g(x)=4 x}-12$
$h(x)=x^{2}+4$
Find: $(g . h)(-2)$
20) $h(x)=3 x^{2}-8$
$g(x)=4 x+6$
Find: $\left(\frac{h}{g}\right)(-4)$

Solve.

21) $f(x)=2 x$

$$
g(x)=x+3
$$

$$
\text { 24) } \begin{aligned}
h(x) & =2 x-2 \\
g(x) & =x+4
\end{aligned}
$$

Find: (goh)(2)

Find: $(f \circ g)(2)$
22) $f(x)=x+2$
$g(x)=x-6$
Find: $(f o g)(-1)$

$$
\text { 25) } \begin{aligned}
f(x) & =2 x-8 \\
g(x) & =x+10 \\
\text { Find: } & (f o g)(-2)
\end{aligned}
$$

23) $f(x)=3 x$
$g(x)=x+4$
Find: (gof)(4)
24) $f(x)=x^{2}-8$ $g(x)=2 x+3$
Find: $(g \circ f)(4)$
2. Use the following function to find: $f(x)=3 x\left(\frac{1}{2}\right)^{2 x+2}$
27) $f(2)$
28) $f(4)$

2 Match each exponential function to its graph.

29) $f(x)=-4(3)^{x}, f(x)=2^{x}+5, f(x)=3(2)^{x}+3$

Solve.

30) As of 2019 , the world population is 8.716 billion and growing at a rate of 1.2% per year. Write an equation to model population growth, where $p(t)$ is the population in billions of people and t is the time in years.
31) You decide to buy a used car that costs $\$ 20,000$. You have heard that the car may depreciate at a rate of 10% per year. At this rate, how much will the car be worth in 6 years?

2 Find the inverse of each function.

32) $f(x)=-\frac{1}{x}-9$
$f^{-1}(x)=$ \qquad
33) $g(x)=\sqrt{x}-2$
$g^{-1}(x)=$ \qquad
34) $h(x)=-\frac{5}{x+3}$ $h^{-1}(x)=$ \qquad
35) $f(x)=6 x+6$ $f^{-1}(x)=$ \qquad

Find the domain and range of each relation.

36) $\{(1,-1),(2,-4),(0,5),(-1,6)\}$
37) $\{(10,-5),(-16,-8),(-4,19),(16,7),(6,-14)\}$
$38)\{(4,7),(-15,6),(-20,9),(13,8),(7,5)$

Solve.

39) Average food preparation time in a restaurant was tracked daily as part of an efficiency improvement program.

Day	Food preparation time (minutes)
Tuesday	45
Wednesday	49
Thursday	32
Friday	15
Saturday	25

According to the table, what was the rate of change between Tuesday and Wednesday?

Complete the table.

$$
\text { 40) }
$$

41)

$f(x)=2 x$	
x	$f(x)$
1	
2	
3	

Answers

1) -3
2) 10
3) -10
4) 3
5) 37
6) -1
7) $8 n^{2}-8 n$
8) $-108 a^{3}-10$
9) 13
10) 0
11) 16
12) 29
13) $3 x^{2}-12 x+22$
14) $-6 a^{2}-33$
15) -30
16) $\frac{1}{2}$
17) $\frac{14}{3}$
18) 49
19) -160
20) -4
21) 10
22) -5
23) 16
24) 6
25) 8
26) 19
27) $\frac{3}{32}$
28) $\frac{3}{256}$
29) $A=3(2)^{x}+3$,

$$
B=2^{x}+5
$$

$$
C=-4(3)^{x}
$$

30) $p(t)=8.716(1+0.012)^{t}$
31) $A=20,000(1-0.1)^{6}$
32) $-\frac{1}{x+9}$
33) $x^{2}+4 x+4$
34) $-\frac{5}{x}-3$
35) $\frac{x-6}{6}$
36) $D=(1,2,0,-1)$,
$R=(-1,-4,5,6)$
37) $D=(10,-16,-4,16,6)$,
$R=(-5,-8,19,7,-14)$
38) $D=(4,-15,-20,13,7)$,

$$
R=(7,6,9,8,5)
$$

39) 4
40)

$f(x)=3 x-2$	
x	$f(x)$
-3	-11
0	-2
2	4

41)

$f(x)=2 x$	
x	$f(x)$
1	2
2	4
3	6

Answers and Explanations

1. Replace x with -1 in the function $f(x)=x-2$. So, $f(-1)=-1-2=-3$. This means when x is -1 , the value of the function is -3 .
2. Substitute x with 3 in $g(x)=2 x+4$. This gives $g(3)=2 \times 3+4=10$. Thus, when x is 3 , the function evaluates to 10 .
3. Here, replace n with -1 in $g(n)=2 n-8$.

This results in $g(-1)=2 \times-1-8=-10$. So, the function value is -10 when n is -1 .
4. For $h(-2)$, substitute n with -2 in $h(n)=n^{2}-1$.

We get $h(-2)=-2^{2}-1=4-1=3$. Hence, $h(-2)$ is 3 .
5. Replace x with 5 in $f(x)=x^{2}+12$. So, $f(5)=5^{2}+12=25+12=37$. The function value is 37 when x is 5 .
6. In $g(x)=2 x^{2}-9$, substitute x with -2 , giving $g(-2)=2 \times(-2)^{2}-9=8-$ $9=-1$. Therefore, $g(-2)$ is -1 .
7. For $w(2 n)$, replace x with $2 n$ in $w(x)=2 x^{2}-4 x$.

This leads to $w(2 n)=2 \times(2 n)^{2}-4 \times 2 n=8 n^{2}-8 n$. Thus, $w(2 n)$ equals $8 n^{2}-8 n$.
8. Substitute x with $-3 a$ in $p(x)=4 x^{3}-10$.

We get $p(-3 a)=4(-3 a)^{3}-10=-108 a^{3}-10$. So, $p(-3 a)$ is $-108 a^{3}-10$.
9. We add g and h and then substitute $x=3:(h+g)(x)=(2 x+6)+(x-2)$, which simplifies to $3 x+4$. Substituting $x=3$ gives us $3(3)+4=9+4=13$.
10. We add f and g and substitute $x=2:(f+g)(x)=(3 x+2)+(-x-6)$, simplifying to $2 x-4$. Substituting $x=2$ gives us $2(2)-4=4-4=0$.
11. We subtract g from f and substitute $x=-2$:
$(f-g)(x)=(5 x+8)-(3 x-12)$, simplifying to $2 x+20$. Substituting $x=-2$ gives us $2(-2)+20=-4+20=16$.
12. We add h and g and substitute $x=3:(h+g)(x)=\left(2 x^{2}-10\right)+(3 x+12)$, which simplifies to $2 x^{2}+3 x+2$.

Substituting $x=3$ gives us $2(3)^{2}+3(3)+2=18+9+2=29$.
13. We subtract g from h without substituting any value for x :
$(h-g)(x)=\left(3 x^{2}+14\right)-(12 x-8)$, simplifying to $3 x^{2}-12 x+22$.
14. We subtract g from h and substitute x with a :
$(h-g)(x)=\left(-2 x^{2}-18\right)-\left(4 x^{2}+15\right)$, simplifying to $-6 x^{2}-33$. When we substitute x with a, the expression remains $-6 a^{2}-33$.
15. First, we find $g(-1)$, which is $-1-5=-6$.

Then, we find $h(-1)$, so $h(-1)=-1+6=5$. Therefore, $(g \cdot h)(-1)=-6 \times 5=-30$.
16. We calculate $f(-2)$ as $2 \times(-2)+2=-4+2=-2$. Similarly, $g(-2)$ is $-(-2)-6=2-6=-4$. We then divide these results: $\frac{-2}{-4}=\frac{1}{2}$.
17. Here, $f(5)=5 \times 5+3=25+3=28$. For $g(5)$, we get $(2 \times 5)-4=10-4=6$. Dividing, $\frac{28}{6}=\frac{14}{3}$. Thus, $\left(\frac{f}{g}\right)(5)=\frac{14}{3}$.
18. First, calculate $h(3)=3^{2}-2=9-2=7$. Then, $g(3)=3+4=7$.

So, $(g . h)(3)=7 \times 7=49$.
19. We start with $h(-2)=(-2)^{2}+4=4+4=8$.

Then, $g(-2)=4 \times(-2)-12=-8-12=-20$.
Therefore, $(g \cdot h)(-2)=8 \times(-20)=-160$.
20. Calculating $h(-4)=3 \times(-4)^{2}-8=(3 \times 16)-8=48-8=40$. For $g(-4)$, it's
$4 \times(-4)+6=-16+6=-10$. Dividing these gives $\frac{40}{-10}=-4$.
Thus, $\left(\frac{h}{g}\right)(-4)=-4$.
21. First, we find $g(2)$, which is $2+3=5$. Then, we use this value in $f(x)$, so $f(5)=2 \times 5=10$. Therefore, $(f o g)(2)=10$.
22. We calculate $g(-1)$ as $-1-6=-7$. Then, we substitute this into $f(x)$, so $f(-7)=-7+2=-5$. Hence, $(f o g)(-1)=-5$.
23. First, find $f(4)$, which is $3 \times 4=12$. Next, use this value in $g(x)$, resulting in $g(12)=12+4=16$. Thus, $(g \circ f)(4)=16$.
24. Compute $h(2)$ by substituting 2 into $h(x)$, giving $h(2)=(2 \times 2)-2=4-2=2$. Then, use this result in $g(x)$, so $g(2)=2+4=6$. Therefore, $(g o h)(2)=6$.
25. Calculate $g(-2)$ as $-2+10=8$. Next, use this value in $f(x)$, resulting in $f(8)=2 \times 8-8=16-8=8$. So, $(f o g)(-2)=8$.
26. Start by finding $f(4)$, which is $4^{2}-8=16-8=8$. Then, substitute this result into $g(x)$, giving $g(8)=(2 \times 8)+3=16+3=19$. Hence, $(g \circ f)(4)=19$.
27. To evaluate $f(2)$, we substitute $x=2$ into the function $f(x)=3 x\left(\frac{1}{2}\right)^{2 x+2}$. This becomes $3 \times 2\left(\frac{1}{2}\right)^{2 \times 2+2}=6 \times\left(\frac{1}{2}\right)^{6}$. The expression $\left(\frac{1}{2}\right)^{6}$ represents $\frac{1}{2}$ multiplied by itself 6 times, which equals $\frac{1}{64}$. Thus, $f(2)=6 \times \frac{1}{64}=\frac{6}{64}=\frac{3}{32}$.
28. For $f(4)$, we substitute $x=4$ into the same function, resulting in $3 \times 4\left(\frac{1}{2}\right)^{2 \times 4+2}=12 \times\left(\frac{1}{2}\right)^{10}$. The term $\left(\frac{1}{2}\right)^{10}$ is $\frac{1}{2}$ raised to the 10 th power, which equals $\frac{1}{1,024}$. Therefore, $f(4)=12 \times \frac{1}{1,024}=\frac{12}{1,024}=\frac{3}{256}$.
29. $f(x)=-4(3)^{x}$. This function has a negative coefficient in front of the base, which means it will reflect across the x-axis, resulting in a graph that decreases as x increases. The base is greater than 1 , so the reflection will still show an exponential decay. Therefore, we're looking for a graph that goes downwards as we move from left to right. This matches with graph C.
$f(x)=2^{x}+5$: This function is a standard exponential growth function with a vertical shift upwards by 5 units. Since there's no negative sign or coefficient greater than 1 in front of the base, the graph will increase as x increases and will be above the standard 2^{x} graph by 5 units. This is represented by graph B.
$f(x)=3(2)^{x}+3$: Similar to the second function, this one also represents exponential growth with a base of 2 . However, it has a larger vertical shift than the second function due to the " +3 " outside the exponent, moving it further up. The coefficient of 3 in front of the 2^{x} will make the graph grow faster than the standard 2^{x} graph. This is shown by graph A, which grows faster and starts higher due to the vertical shift compared to graph B.
30. To model the world population growth based on the given data, we can use an exponential growth equation. The standard form for exponential growth is $p(t)=p_{0}(1+r)^{t}$, where p_{0} is the initial amount (in this case, the initial population), r is the growth rate (as a decimal), and t is the time in years. Here, $p_{0}=8.716$ billion (the population in 2019). The growth rate $r=1.2 \%=0.012$ (converted from a percentage to a decimal), t will be the number of years since 2019. So, the equation to model the population growth is $p(t)=8.716(1+$ $0.012)^{t}$.
31. For the depreciation of the car, we'll use an exponential decay model since the car's value decreases over time. The formula for exponential decay is similar to growth: $A_{t}=A_{0}(1-r)^{t}$, where A_{0} is the initial value, r is the rate of decay, and t is the time in years. The initial value of the car, A_{0} is $\$ 20,000$, the annual depreciation rate $r=10 \%=0.1$.

For $t=6$ years, the equation becomes $A(6)=20,000(1-0.1)^{6}$.
32. First, replace $f(x)$ with $y: y=-\frac{1}{x}-9$. To find the inverse, swap x and y :
$x=-\frac{1}{y}-9$. Next, isolate y. Start by adding 9 to both sides: $x+9=-\frac{1}{y}$. Multiply both sides by $-y$ to get rid of the fraction: $-y(x+9)=1$. Finally, solve for y by dividing by $-(x+9): y=-\frac{1}{x+9}$. Therefore, $f^{-1}(x)=-\frac{1}{x+9}$.
33. Write the function as $y=\sqrt{x}-2$. To find its inverse, exchange x and y : $x=\sqrt{y}-2$. Rearrange to solve for y. First, add 2 to both sides: $x+2=\sqrt{y}$. Then square both sides to eliminate the square root: $(x+2)^{2}=y$.
Thus, $g(x)^{-1}=(x+2)^{2}=x^{2}+4 x+4$.
34. Start with $y=-\frac{5}{x+3}$. Swap x and y to get $x=-\frac{5}{y+3}$. Rearrange to find y. Multiply both sides by $y+3$ and then by $-x(y+3)=5$.
Divide by $-x$ to get $y+3=-\frac{5}{x}$. Subtract 3 to isolate y : $y=-\frac{5}{x}-3$. Therefore, $h(x)^{-1}=-\frac{5}{x}-3$.
35. Represent the function as $y=6 x+6$. Exchange x and $y: x=6 y+6$. Now, solve for y. Subtract 6 from both sides: $x-6=6 y$. Divide everything by 6 :
$y=\frac{x-6}{6}$. Hence, $f^{-1}(x)=\frac{x-6}{6}$.
36. Look at the first numbers in each pair: $1,2,0,-1$. These represent the x values. So, the domain is $\{1,2,0,-1\}$. Now look at the second numbers: $-1,-4,5,6$. These are the y-values. Therefore, the range is $\{-1,-4,5,6\}$.
37. The first numbers are $10,-16,-4,16,6$. These form the domain: $\{10,-16,-4,16,6\}$. The second numbers are $-5,-8,19,7,-14$. These make up the range: $\{-5,-8,19,7,-14\}$.
38. The first elements are $4,-15,-20,13,7$. So, the domain is $\{4,-15,-20,13,7\}$. The second elements are $7,6,9,8,5$. Thus, the range is $\{7,6,9,8,5\}$.
40. To find the rate of change, we subtract the value at the starting point from the value at the ending point, and then divide by the time passed. Rate of Change $=\frac{\text { Wednesday'stime-Tuesday's sime }}{\text { Time passed }}=\frac{49-45}{1}=4$.
41. For the first function, $f(x)=3 x-2$: When $f(-3)=3(-3)-$ $2=-9-2=-11$.

When $f(0)=3(0)-2=0-2=-2$. When $f(2)=3(2)-2=$ $6-2=4$.
42. For the second function, $f(x)=2 x$: When $f(1)=2(1)=2$.

$f(x)=3 x-2$	
x	$f(x)$
-3	-11
0	-2
2	4

When $f(2)=2(2)=4$. When $f(3)=2(3)=6$.

$f(x)=2 x$	
x	$f(x)$
1	2
2	4
3	6

Chapter
 Radical Expressions

Math topics in this chapter:
\square Finding Slope
\square Simplifying Radical Expressions
\checkmark Adding and Subtracting Radical Expressions
\square Multiplying Radical Expressions
\square Rationalizing Radical Expressions
V Radical Equations
\checkmark Domain and Range of Radical Functions
V Simplify Radicals with Fractions

Practices

Evaluate.

1) $\sqrt{49}=$ \qquad 4) $\sqrt{289}=$ \qquad
2) $\sqrt{4} \times \sqrt{81}=$ \qquad 5) $\sqrt{25 b^{4}}=$ \qquad
3) $\sqrt{16} \times \sqrt{4 x^{2}}=$ \qquad
4) $\sqrt{9} \times \sqrt{x^{2}}=$ \qquad

Simplify.

7) $\sqrt{6}+6 \sqrt{6}=$
8) $9 \sqrt{8}-6 \sqrt{2}=$
9) $-\sqrt{7}-5 \sqrt{7}=$
10) $10 \sqrt{2}+3 \sqrt{18}=$
11) $\sqrt{12}-6 \sqrt{3}=$
12) $-2 \sqrt{x}+6 \sqrt{x}=$

Evaluate.

13) $\sqrt{4} \times 2 \sqrt{9}=$
14) $\sqrt{5} \times 3 \sqrt{20 y}=$
15) $-6 \sqrt{4} \times 3 \sqrt{4}=$
16) $-9 \sqrt{3 b^{2}} \times(-\sqrt{6})=$

Simplify.

17) $\frac{1+\sqrt{5}}{1-\sqrt{3}}=$
18) $\frac{2+\sqrt{6}}{\sqrt{2}-\sqrt{5}}=$
19) $\frac{\sqrt{7}}{\sqrt{6}-\sqrt{3}}=$
20) $\frac{\sqrt{8 a}}{\sqrt{a^{5}}}=$

Solve for x in each equation.

21) $2 \sqrt{2 x-4}=8$
22) $\sqrt{x}+6=11$
23) $9=\sqrt{4 x-1}$
24) $\sqrt{5 x}=\sqrt{x+3}$

2 Identify the domain and range of each function.

25) $y=\sqrt{x+1}$
26) $y=\sqrt{x-2}+6$
27) $y=\sqrt{x}-1$
28) $y=\sqrt{x-4}$

Simplify.

29) $\sqrt{\frac{625}{36}}$
30) $\sqrt{\frac{1,296}{25}}$
31) $\sqrt{\frac{147}{64}}$
32) $\sqrt{\frac{98}{18}}$

Algebra I for Beginners

Answers

1) 7
2) 18
3) $8 x$
4) 17
5) $5 b^{2}$
6) $3 x$
7) $7 \sqrt{6}$
8) $12 \sqrt{2}$
9) $-6 \sqrt{7}$
10) $19 \sqrt{2}$
11) $-4 \sqrt{3}$
12) $4 \sqrt{x}$
13) 12
14) $30 y$
15) -72
16) $27 b \sqrt{2}$
17) $-\frac{(1+\sqrt{5})(1+\sqrt{3})}{2}$
18) $-\frac{2 \sqrt{2}+2 \sqrt{5}+2 \sqrt{3}+\sqrt{30}}{3}$
19) $\frac{\sqrt{7}(\sqrt{6}+\sqrt{3})}{3}$
20) $\frac{2 \sqrt{2}}{a^{2}}$
21) $x=10$
22) $x=20.5$
23) $x=25$
24) $x=\frac{3}{4}$
25) $x \geq-1, y \geq 0$
26) $x \geq 2, y \geq 6$
27) $x \geq 0, y \geq-1$
28) $x \geq 4, y \geq 0$
29) $\frac{25}{6}$
30) $\frac{36}{5}$
31) $\frac{7 \sqrt{3}}{8}$
32) $\frac{7}{3}$

Answers and Explanations

1. The square root of 49 is the number that when multiplied by itself equals 49 . This number is 7 because $7 \times 7=49$.
2. The square root of 4 is 2 , and the square root of 81 is 9 . When you multiply these together, 2×9, you get 18 .
3. The square root of 16 is 4 , and the square root of $4 x^{2}$ is $2 x$. Multiplying these together, $4 \times 2 x$, gives $8 x$.
4. The square root of 289 is the number that when squared equals 289. This number is 17 because $17 \times 17=289$.
5. The square root of $25 b^{4}$ is the product of the square root of 25 , which is 5 , and the square root of b^{4}, which is b^{2}. So, $5 \times b^{2}=5 b^{2}$.
6. The square root of 9 is 3 , and the square root of x^{2} is x. Multiplying these gives $3 \times x$, or $3 x$.
7. Both terms have the square root of 6 , so they can be combined just like you would combine like terms such as $1 x+6 x$. Therefore, $\sqrt{6}+6 \sqrt{6}$ simplifies to $7 \sqrt{6}$.
8. Here, we can simplify $\sqrt{8}$ to $2 \sqrt{2}$ (since 8 is 4 times 2 , and the square root of 4 is 2). This gives us $9 \times 2 \sqrt{2}-6 \sqrt{2}$, which simplifies to $18 \sqrt{2}-6 \sqrt{2}$, and further to $12 \sqrt{2}$.
9. These are like terms since both involve the square root of 7. Combining them like regular numbers, we get $-1 \sqrt{7}-5 \sqrt{7}$ which simplifies to $-6 \sqrt{7}$.
10. We can simplify $\sqrt{18}$ to $3 \sqrt{2}$ (since 18 is 9 times 2 , and the square root of 9 is 3). This gives us $10 \sqrt{2}+3 \times 3 \sqrt{2}$, which simplifies to $10 \sqrt{2}+9 \sqrt{2}$, and further simplifies to $19 \sqrt{2}$.
11. We can simplify $\sqrt{12}$ to $2 \sqrt{3}$ (since 12 is 4 times 3 , and the square root of 4 is 2). This gives us $2 \sqrt{3}-6 \sqrt{3}$, which simplifies to $-4 \sqrt{3}$.
12. These are like terms since both involve the square root of x. We combine them just like we would with similar variables, $-2 \sqrt{x}+6 \sqrt{x}$, which simplifies to $4 \sqrt{x}$.
13. First, evaluate the square roots: $\sqrt{4}$ is 2 , and $\sqrt{9}$ is 3 . Now multiply the numbers outside the square roots: 2 times 2 , which equals 4 . Then multiply this by the square root we found earlier, which is 3 , to get $4 \times 3=12$.
14. We can't simplify $\sqrt{5}$, but we can simplify $\sqrt{20}$. Since 20 is 4 times 5 and the square root of 4 is $2, \sqrt{20}$ is $2 \sqrt{5}$. Now multiply the coefficients (numbers outside
the square roots): 3 times 2 equals 6 . Finally, multiply this by the $\sqrt{5}$ we left untouched earlier to get $6 \sqrt{5} \times \sqrt{5}$, which simplifies to $6 \times 5=30$ since $\sqrt{5} \times \sqrt{5}=5$. So, the expression becomes $30 y$.
15. The square root of 4 is 2 , so $\sqrt{4}$ is 2 . Multiply -6 by 2 to get -12 , and 3 by 2 to get 6 . Then multiply -12 by 6 , which equals -72 .
16. We'll simplify $\sqrt{\left(3 b^{2}\right)}$. Since b^{2} is just b times b, and the square root of a squared number is the number itself, $\sqrt{\left(3 b^{2}\right)}$ is $b \sqrt{3}$. Now, multiply -9 by $b \sqrt{3}$ to get $-9 b \sqrt{3}$. Finally, multiply this by $-\sqrt{6}$ to get $-9 b \sqrt{3} \times-\sqrt{6}$, which simplifies to $9 b \sqrt{18}$. The square root of 18 can be simplified further to $3 \sqrt{2}$ (since 18 is 9 times 2 and the square root of 9 is 3), resulting in $9 b \times 3 \sqrt{2}=27 b \sqrt{2}$.
17. To simplify, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of $1-\sqrt{3}$ is $1+\sqrt{3}$. This removes the square root from the denominator. $\frac{1+\sqrt{5}}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$ Multiply out both the numerator and the denominator: $\frac{(1+\sqrt{5})(1+\sqrt{3})}{1-3}=-\frac{(1+\sqrt{5})(1+\sqrt{3})}{2}$.
18. Here again, we use the conjugate to eliminate the square root from the denominator. The conjugate of $\sqrt{2}-\sqrt{5}$ is $\sqrt{2}+\sqrt{5} . \frac{2+\sqrt{6}}{\sqrt{2}-\sqrt{5}} \times \frac{\sqrt{2}+\sqrt{5}}{\sqrt{2}+\sqrt{5}}$. Multiply and simplify: $\frac{(2+\sqrt{6})(\sqrt{2}+\sqrt{5})}{2-5}$. Expand and simplify: $-\frac{2 \sqrt{2}+2 \sqrt{5}+2 \sqrt{3}+\sqrt{30}}{3}$.
19. Use the conjugate technique again. Multiply the expression by $\frac{\sqrt{6}+3}{\sqrt{6}+3}$. $\frac{\sqrt{7}}{\sqrt{6}-\sqrt{3}} \times \frac{\sqrt{6}+3}{\sqrt{6}+3}$. Simplify: $\frac{\sqrt{7}(\sqrt{6}+\sqrt{3})}{6-3}=\frac{\sqrt{7}(\sqrt{6}+\sqrt{3})}{3}$.
20. Simplify each square root separately.
$\sqrt{8 a}=\sqrt{2 \times 4 \times a}=2 \sqrt{2 a}$ and $\sqrt{a^{5}}=a^{2} \sqrt{a}$. Now divide: $\frac{2 \sqrt{2 a}}{a^{2} \sqrt{a}}$. Simplify the square roots: $\frac{2}{a^{2}} \times \sqrt{\frac{2 a}{a}}=\frac{2 \sqrt{2}}{a^{2}}$.
21. To solve, first divide both sides by $2: \sqrt{2 x-4}=4$. Now, square both sides to eliminate the square root: $2 x-4=16$. Next, add 4 to both sides: $2 x=20$. Finally, divide by 2: $x=10$.
22. Start by squaring both sides to remove the square root: $81=4 x-1$. Then, add 1 to both sides: $82=4 x$. Divide by 4 to isolate $x=20.5$.
23. First, isolate the square root by subtracting 6 from both sides: $\sqrt{x}=5$. Now, square both sides to eliminate the square root: $x=25$.
24. Square both sides to remove the square roots: $5 x=x+3$. Next, subtract x from both sides: $4 x=3$. Finally, divide by 4 : $x=\frac{3}{4}$.
25. The expression inside the square root, $x+1$, must be greater than or equal to 0 . Solving $x+1 \geq 0$ gives us $x \geq-1$. So, the domain is all real numbers x such that $x \geq-1$. Since square roots always yield non-negative results, y will be 0 or positive. Therefore, the range is all real numbers y such that $y \geq 0$.
26. For $x-2$ to be non-negative, $x \geq 2$. Thus, the domain is $x \geq 2$. The smallest value of $\sqrt{(x-2)}$ is 0 (when $x=2$), and since we add 6 to it, the smallest value of y is 6 . Hence, the range is $y \geq 6$.
27. The square root of x requires x to be non-negative, so $x \geq 0$. This makes the domain $x \geq 0$. The smallest value \sqrt{x} can take is 0 (when $x=0$) and subtracting 1 from it gives -1 . So, the range starts from -1 and goes upwards, making it $y \geq-1$.
28. For $x-4$ to be non-negative, x must be at least 4 . Therefore, the domain is $x \geq 4$. The square root function yields non-negative outputs. Thus, the smallest value for y is 0 (when $x=4$), making the range $y \geq 0$.
29. The square root of 625 is 25 (because $25 \times 25=625$), and the square root of 36 is 6 (since $6 \times 6=36$). So, $\sqrt{\frac{625}{36}}$ becomes $\frac{25}{6}$.
30. Here, the square root of 1,296 is 36 (as $36 \times 36=1,296$), and the square root of 25 is $5(5 \times 5=25)$. Thus, $\sqrt{\frac{1,296}{25}}$ simplifies to $\frac{36}{5}$.
31. For this, the square root of 147 is not a whole number, but we can simplify it. Let's find the largest perfect square that divides into 147. The factors of 147 include $1,3,7,21,49,147$. The largest perfect square among these is 49 . So, 147 can be written as 49×3. The square root of 49 is 7 , so the square root of 147 simplifies to $7 \sqrt{3}$. The square root of 64 is $8(8 \times 8=64)$. So, $\sqrt{\frac{147}{64}}$ becomes $\frac{7 \sqrt{3}}{8}$.
32. The number 98 doesn't have a perfect square root, but it can be simplified. Let's find the largest perfect square that divides into 98 . The factors of 98 include $1,2,7,14,49,98$. The largest perfect square among these is 49 . So, 98 can be written as 49×2. The square root of 49 is 7 , so the square root of 98 simplifies to $7 \sqrt{2}$. The number 18 is not a perfect square, so its square root does not simplify to a whole number. The factors of 18 include $1,2,3,6,9,18$. The largest perfect square is 9 . So, 18 can be written as 9×2, and the square root of 18 simplifies to $3 \sqrt{2}$. Combining these, $\sqrt{\frac{98}{18}}$ simplifies to $\frac{7 \sqrt{2}}{3 \sqrt{2}}$. When you simplify this fraction, the $\sqrt{2}$ in the numerator and denominator cancel out, leaving $\frac{7}{3}$.

Chapter

Math topics in this chapter:
\checkmark Simplifying Complex Fractions
\checkmark Graphing Rational Functions
\checkmark Adding and Subtracting Rational Expressions
■ Multiplying Rational Expressions
\square Dividing Rational Expressions
\checkmark Evaluate Integers Raised to Rational Exponents

Practices

Simplify each expression.

1) $\frac{\frac{8}{3}}{\frac{2}{5}}=$
2) $\frac{\frac{x}{3}+\frac{x}{8}}{\frac{1}{4}}=$
3) $\frac{\frac{x+3}{3}}{\frac{x-2}{2}}=$
4) $\frac{1+\frac{x}{4}}{x}=$

Graph rational expressions.

5) $f(x)=\frac{x^{2}-2 x}{x-3}$

6) $f(x)=\frac{6 x+1}{x^{2}-4 x}$

Simplify each expression.

7) $\frac{x+6}{x+1}-\frac{x+9}{x+1}=$
8) $\frac{2 x+1}{x+3}+\frac{2}{x+4}=$
9) $\frac{14}{x+4}+\frac{6}{x^{2}-16}=$
10) $\frac{x+2}{x+8}-\frac{2 x}{x-8}=$

Simplify each expression.

11) $\frac{20 x^{3}}{3} \times \frac{15}{4 x}=$
12) $\frac{x+6}{4} \times \frac{16}{x+6}=$
13) $\frac{x+10}{4 x} \times \frac{3 x}{7 x+70}=$
14) $\frac{x+8}{x+6} \times \frac{x-6}{4 x+32}=$

Simplify each expression.

15) $\frac{10 x}{x+2} \div \frac{x}{60 x+120}=$
16) $\frac{5}{4} \div \frac{45}{8 x}=$
17) $\frac{x-6}{x+3} \div \frac{4}{x+3}=$
18) $\frac{7 x^{3}}{x^{2}-64} \div \frac{x^{3}}{x^{2}+x-56}=$

Simplify.

19) $\left(121 x^{6}\right)^{\frac{1}{2}}$
20) $\left(64 x^{12}\right)^{\frac{1}{6}}$
21) $(-32)^{-\frac{1}{5}}$
22) $(-27)^{\frac{1}{3}}$

Answers

1) $\frac{20}{3}$
2) $\frac{11 x}{6}$
3) $f(x)=\frac{x^{2}-2 x}{x-3}$

4) $-\frac{3}{x+1}$
5) $\frac{2 x^{2}+11 x+10}{(x+3)(x+4)}$
6) $\frac{14 x-50}{(x+4)(x-4)}$
7) $\frac{-x^{2}-22 x-16}{(x+8)(x-8)}$
8) $25 x^{2}$
9) 4
10) $\frac{3}{28}$
11) $\frac{x-6}{4(x+6)}$
12) $\frac{2 x+6}{3 x-6}$
13) $\frac{4+x}{4 x}$
14) $f(x)=\frac{6 x+1}{x^{2}-4 x}$

15) 600
16) $\frac{2 x}{9}$
17) $\frac{x-6}{4}$
18) $\frac{7(x-7)}{x-8}$
19) $11 x^{3}$
20) $2 x^{2}$
21) $-\frac{1}{2}$
22) -3

Answers and Explanations

1. To divide fractions, you multiply the first fraction by the reciprocal (flipped version) of the second fraction. So, $\frac{8}{3} \div \frac{2}{5}$ becomes $\frac{8}{3} \times \frac{5}{2}$. Multiply the numerators together (8 times 5) and the denominators together (3 times 2) to get $\frac{40}{6}$. This simplifies to $\frac{20}{3}$ when reduced.
2. First, add $\frac{x}{3}$ and $\frac{x}{8}$. Find a common denominator, which is 24 in this case. So, $\frac{x}{3}=\frac{8 x}{24}$ and $\frac{x}{8}=\frac{3 x}{24}$. Adding these gives $\frac{11 x}{24}$. Now, divide this by $\frac{1}{4}$, which is the same as multiplying by 4 (the reciprocal of $\frac{1}{4}$). So $\frac{11 x}{24} \times 4=\frac{11 x}{6}$.
3. Similar to the first problem, you multiply the first fraction by the reciprocal of the second. This becomes $\frac{x+3}{3} \times \frac{2}{x-2}$. You just multiply straight across, getting $\frac{2(x+3)}{3(x-2)}=\frac{2 x+6}{3 x-6}$.
4. Combine the terms in the numerator. The common denominator is 4 , so 1 becomes $\frac{4}{4}$. The numerator is now $\frac{4+x}{4}$. Now divide by x, which means multiply by the reciprocal of $x\left(\frac{1}{x}\right)$. So, $\frac{\frac{4+x}{4}}{x}=\frac{4+x}{4 x}$. This is the simplified form.
5. This function is undefined at $x=3$ because dividing by zero is not allowed. The graph is plotted for a range of x-values, excluding 3. As x approaches 3, the function's value either increases or decreases sharply, creating a vertical asymptote (a line the graph approaches but never touches) at $x=3$.

6. This function is undefined at $x=0$ and $x=4$, as these values make the denominator zero. Similar to the first function, the graph is plotted for x-values, excluding 0 and 4. The graph shows vertical asymptotes at $x=0$ and $x=4$, where the function's value sharply increases or decreases.
7. Both fractions have the same denominator $(x+1)$, so we can directly subtract the numerators. Subtracting $(x+9)$ from $(x+6)$ gives $(x+6)-(x+9)$,

which simplifies to -3 . The final simplified expression is $-\frac{3}{x+1}$.
8. The denominators here are different, so first find a common denominator, which is $(x+3)(x+4)$. Adjust each fraction to have this common denominator: $\frac{(2 x+1)(x+4)}{(x+3)(x+4)}+\frac{2(x+3)}{(x+3)(x+4)}$. Expand and simplify: $\frac{2 x^{2}+11 x+10}{(x+3)(x+4)}$.
9. For these fractions, the second denominator $x^{2}-16$ can be factored as ($x-$ 4) $(x+4)$. This is the common denominator. Rewrite the first fraction using this: $\frac{14(x-4)}{(x-4)(x+4)}+\frac{6}{(x-4)(x+4)}$. Combine these: $\frac{14 x-56+6}{(x-4)(x+4)}$. Which simplifies to: $\frac{14 x-50}{(x-4)(x+4)}$.
10. This expression's common denominator is $(x+8)(x-8)$. Rewrite each fraction: $\frac{(x+2)(x-8)}{(x+8)(x-8)}-\frac{2 x(x+8)}{(x+8)(x-8)}$. Expand and combine: $\frac{x^{2}-6 x-16-2 x^{2}-16 x}{(x+8)(x-8)}$. The simplified form is: $\frac{-x^{2}-22 x-16}{(x+8)(x-8)}$.
11. To simplify, first multiply the numerators together and the denominators together: $\frac{20 x^{3} \times 15}{3 \times 4 x}$. Simplify the multiplication: $\frac{300 x^{3}}{12 x}$. Now, divide both the numerator and the denominator by the common factor x : $\frac{300 x^{2}}{12}$. Finally, simplify this fraction by dividing both numerator and denominator by their greatest common divisor, which is $12: \frac{25 x^{2}}{1}=25 x^{2}$.
12. In this expression, the factor $x+6$ appears in both the numerator and the denominator. These can be canceled out: $\frac{x+6}{4} \times \frac{16}{x+6}=\frac{1}{4} \times 16$. Now, just multiply the remaining numbers: 4 .
13. Notice that $7 x+70$ can be factored as $7(x+10)$. Rewrite the expression with this factorization: $\frac{x+10}{4 x} \times \frac{3 x}{7(x+10)}$. Now, cancel out the common factors $x+10$ and $x: \frac{1}{4} \times \frac{3}{7}$. Multiply the remaining fractions: $\frac{3}{28}$.
14. First, note that $4 x+32$ can be factored as $4(x+8)$. Use this factorization: $\frac{x+8}{x+6} \times \frac{x-6}{4(x+8)}$. Cancel out the common factor $x+8: \frac{1}{x+6} \times \frac{x-6}{4}$. Simply multiply these fractions: $\frac{x-6}{4(x+6)}$.
15. First, divide by a fraction by multiplying by its reciprocal: $\frac{10 x}{x+2} \times \frac{60 x+120}{x}$. Simplify: $\frac{10 x}{x+2} \times \frac{60(x+2)}{x}$. Now, $x+2$ cancels out, leaving $\frac{10 x \times 60}{x}$. Simplify further: 600 (since x cancels out).
16. Again, divide by a fraction by multiplying by its reciprocal: $\frac{5}{4} \times \frac{8 x}{45}$. Multiply numerators and denominators: $\frac{5 \times 8 x}{4 \times 45}$. Simplify: $\frac{40 x}{180}$. Reduce the fraction: $\frac{2 x}{9}$ (dividing both the numerator and denominator by 20).
17. Use reciprocal multiplication: $\frac{x-6}{x+3} \times \frac{x+3}{4}$. Notice $x+3$ cancels out: $\frac{x-6}{4}$.
18. Multiply by reciprocal: $\frac{7 x^{3}}{x^{2}-64} \times \frac{x^{2}+x-56}{x^{3}}$. Factorize the denominators:
$x^{2}-64=(x-8)(x+8)$ and $x^{2}+x-5=(x+8)(x-7)$. Apply the factorized forms: $\frac{7 x^{3}}{(x-8)(x+8)} \times \frac{(x+8)(x-7)}{x^{3}}$. Cancel out common terms: $\frac{7(x-7)}{x-8}$.
19. Here, the expression asks for the square root of $121 x^{6}$. When taking the square root, we find a number that multiplied by itself gives the original number. The square root of 121 is 11 because 11×11 equals 121 . For the x^{6} part, we divide the exponent by 2 (since square root is the same as raising to the power $\frac{1}{2}$), resulting in x^{3}. Thus, the simplified expression is $11 x^{3}$.
20. This expression is asking for the sixth root of $64 x^{12}$. The sixth root is a number that, when raised to the power of 6 , gives the original number. 64 is 2^{6}, so its sixth root is 2 . For the x^{12} part, dividing the exponent 12 by 6 (as we're taking the sixth root) gives us x^{2}. Thus, the simplified form is $2 x^{2}$.
21. This is slightly different as it involves a negative fractional exponent. The expression is equivalent to taking the fifth root of -32 and then finding its reciprocal due to the negative exponent.

The fifth root of -32 is -2 (as $-2^{5}=-32$). The negative exponent flips it to its reciprocal, resulting in $-\frac{1}{2}$.
22. This asks for the cube root of -27 . The cube root of a number is a value that, when cubed (raised to the power of 3), returns the original number. For -27 , this is -3 , as $(-3)^{3}=-27$. No further simplification is needed, so the answer is -3 .

Chapter

Statistics and Probabilities

Math topics in this chapter:

Mean, Median, Mode, and Range of the Given Data

- Pie Graph
- Scatter Plots
- Probability Problems
\square Permutations and Combinations
Calculate and Interpret Correlation Coefficients
\square Equation of a Regression Line and Interpret Regression Lines
\square Correlation and Causation

Practices

2. Find the values of the given data.

1) $6,11,5,3,6$

Mode: \qquad Range: \qquad
Mean: \qquad Median: \qquad
3) $10,3,6,10,4,15$

Mode: \qquad Range: \qquad
Mean: \qquad Median: \qquad

The circle graph below shows all of Bob's expenses for last

 month. Bob spent $\$ 790$ on his Rent last month.5) How much did Bob's total expenses last Bob's last month expenses month? \qquad
6) How much did Bob spend for foods last month? \qquad
7) How much did Bob spend on his bills last month? \qquad
8) How much did Bob spend on his car last month? \qquad Make a scatter plot of the data.

9) Does this scatter plot show a positive trend, a negative trend, or no trend?

hours	amount
1	$\$ 12$
2	$\$ 8$
3	$\$ 14$
4	$\$ 5$
5	$\$ 7$
6	$\$ 10$
7	$\$ 4$
8	$\$ 12$

Solve.

10) Bag A contains 8 red marbles and 6 green marbles. Bag B contains 5 black marbles and 7 orange marbles. What is the probability of selecting a green marble at random from bag A ? What is the probability of selecting a black marble at random from Bag B ?
\qquad
\qquad

Solve.

11) Susan is baking cookies. She uses sugar, flour, butter, and eggs. How many different orders of ingredients can she try? \qquad
12) Jason is planning for his vacation. He wants to go to a museum, go to the beach, and play volleyball. How many different ways of ordering are there for him? \qquad
13) In how many ways can a team of 6 basketball players choose a captain and co-captain? \qquad
14) How many ways can the first and second place be awarded to 11 people?
\qquad
15) A professor is going to arrange her 5 students in a straight line. In how many ways can she do this? \qquad
16) In how many ways can a teacher choose 12 out of 15 students?
\qquad
Find the correlation coefficient of the following data.
17)
18)

x	12	14	18	21	28
y	2	4	6	8	12

x	50	51	52	53	54
y	4.1	4.2	4.3	4.4	4.5

Determine the linear regression equation from the given set of data.
19)

x	2	3	5	8
y	3	6	4	13

20)

x	2	4	6	8
y	4	7	10	12

Determine whether the following relationships reflect both correlation and causation or not.
21) The number of cold and snowy days and the amount of coffee at the ski resort.
22)The number of miles traveled, and the gas used.

Answers

Mode: 6, Range: 8,
Mean: 6.2, Median: 6

1) Mode: 9, Range: 8, 10) 6

Mean: 6, Median: 6.5 11) 30
2)

3) Mean: 8, Median: 8	$14)$	120
Mode: 12, Range: 12,	15)	455

4)
5) $\$ 1,975$

6)	$\$ 158$
7)	$\$ 730.75$

$8)$	
$9)$	$\$ 197.50$

No trend
$\frac{3}{7}, \frac{5}{12}$ 24

6

$$
30
$$

Mode: 10, Range: 12, 110

Mode: 12, Range: 12, ${ }^{15)}$ 455
16)
17)
18)
19)
20)
21)
22)

Correlation no causation
Correlation and causation

Answers and Explanations

1. The mode is the most frequently occurring number, which is 6 in this case. The range is the difference between the highest and lowest values.

Here, it's $11-3=8$. The mean is the average, calculated by adding all the numbers and dividing by the count. Here, it's $\frac{6+11+5+3+6}{5}=6.2$. The median is the middle value when the numbers are in order. For this set, when ordered, the middle value is 6 .
2. The most frequent number is 9 . The highest number is 9 and the lowest is 1 , so the range is $9-1=8$. The average is $\frac{4+9+1+9+6+7}{6}=6$. Sorting these numbers, the middle values are 6 and 7 , so the median (average of these two) is 6.5 .
3. The number that appears most frequently is 10 . The range is $15-3=12$. The mean is $\frac{10+3+6+10+4+15}{6}=8$. When sorted, the middle numbers are 6 and 10 , and their average is 8.
4. The mode is 12 , as it appears most frequently. The difference between the highest (15) and lowest (3) values is 12 . The mean is calculated as $\frac{12+4+8+9+3+12+15}{7}=9$. In the sorted list, the middle number is 9 .
5. First, we know Bob's rent, which is 40% of his total expenses, was $\$ 790$. To find the total expenses, we use the formula: Total expenses $=\frac{\text { Expense Amount }}{\text { Percentage of Total }}$. Here, it's Total expenses $=\frac{\$ 790}{40 \%}$, which is Total expenses $=\frac{\$ 790}{0.4}$. When we calculate this, we find out that Bob's total expenses were $\$ 1,975$.
6. To calculate spending on food, which is 8% of the total, we multiply the total expenses by the percentage for food. That is, $\$ 1,975 \times 8 \%$ (or 0.08). This calculation gives us the food expense, which is $\$ 158$.
7. Similarly, for bills, which are 37% of total expenses, we multiply $\$ 1,975$ by 37% (or 0.37). This gives us the expense for bills, amounting to $\$ 730.75$.
8. Finally, for the car expenses, 10% of the total, we do the same: multiply $\$ 1,975$ by 10% (or 0.1). This results in car expenses of $\$ 197.50$.
9. Looking at your data: $1 \rightarrow \$ 12,2 \rightarrow \$ 8,3 \rightarrow \$ 14,4 \rightarrow \$ 5,5 \rightarrow \$ 7,6 \rightarrow \$ 10,7 \rightarrow$ $\$ 4,8 \rightarrow \$ 12$, it doesn't consistently go up or down as the sequence progresses. The values fluctuate up and down without a clear direction. This indicates that the scatter plot does not show a positive or negative trend; instead, it shows no clear trend.
10. In Bag A, there are 6 green marbles, which are our favorable outcomes. The total number of marbles in Bag A is 8 red +6 green $=14$ marbles. So, the probability of picking a green marble is 6 (green marbles) divided by 14 (total marbles), which gives us $\frac{6}{14}$. Simplifying this, we get $\frac{3}{7}$.

In Bag B, there are 5 black marbles, which are our favorable outcomes. The total number of marbles in Bag B is 5 black +7 orange $=12$ marbles. Therefore, the probability of picking a black marble is 5 (black marbles) divided by 12 (total marbles), which is $\frac{5}{12}$.
11. Susan has 4 ingredients (sugar, flour, butter, eggs). The number of ways to arrange 4 items is calculated by multiplying the number of choices for each position: 4 choices for the first, then 3 , then 2 , then 1 . This is $4 \times 3 \times 2 \times 1=24$ different orders.
12. Jason has 3 activities (museum, beach, volleyball). The number of ways to arrange 3 items is $3 \times 2 \times 1=6$ different orders.
13. Out of 6 players, one is chosen as captain and another as co-captain. The first choice has 6 options, and the second choice has 5 (as one player is already chosen as captain). This is $6 \times 5=30$ ways.
14. For 11 people, first place can be awarded in 11 ways, and second place in 10 ways (since one person is already chosen for first place). This is $11 \times 10=110$ ways.
15. Arranging 5 students is like choosing positions for each one: 5 choices for the first, 4 for the second, and so on. This is $5 \times 4 \times 3 \times 2 \times 1=120$ ways.
16. This is a combination problem, as the order doesn't matter. The formula for combinations is $n C_{r}=\frac{n!}{r!(n-r)!}$, where n is the total number and r is the number chosen. For 12 out of 15 , it's $\binom{15}{12}$ which is $\frac{15!}{12!\times(15-12)!}$.

This simplifies to $\frac{15 \times 14 \times 13}{3 \times 2 \times 1}=455$ ways.
17. The sum of x is 93 and the sum of y is 32 . The sum of x squared is 1,889 and the sum of y squared is 264 . The sum of the products of x and y is 692. Apply the correlation formula: $r=\frac{1}{n-1} \cdot \sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{s_{x} s_{y}}$, where n is 5 (the number of data points). The calculation yields a correlation coefficient of approximately 0.997 , indicating a very strong positive linear relationship between x and y.
18. The sum of x is 260 and the sum of y is 21.5 . The sum of x squared is 13,530 and the sum of y squared is 92.55 . The sum of the products of x and y is 1,119 .

Using the same formula as above, the correlation coefficient is calculated as 1.0, indicating a perfect positive linear relationship between x and y.
19. To determine the linear regression equation from a set of data, we use the formula $y=m x+b$, where m is the slope and b is the y-intercept of the line. The slope represents how much y increases for a one-unit increase in x, and the y intercept is the value of y when x is 0 . For the first dataset, the linear regression equation is calculated as follows: the slope (m) is approximately 1.476 , meaning for each unit increase in x, y increases by about 1.476 units. The y-intercept (b) is approximately -0.143 , which is the value of y when x is 0 . Therefore, the linear regression equation for the first dataset is approximately $y=1.47 x-0.14$.
20. For the second dataset, the linear regression equation is: the slope (m) is approximately 1.35 . The y-intercept (b) is approximately 1.5 . Thus, the linear regression equation for the second dataset is approximately $y=1.35 x+1.5$.
21. The relationship between the number of cold and snowy days and the amount of coffee consumed at the ski resort likely shows correlation but not necessarily causation. Correlation here means that as the number of cold and snowy days increases, the consumption of coffee at the ski resort may also increase. This correlation could be due to people seeking warmth and comfort from hot beverages like coffee during cold conditions. However, this doesn't imply causation, which would mean that cold and snowy days directly cause an increase in coffee consumption. There could be other factors influencing coffee consumption, such as personal preferences or the presence of other warm beverages.
22. The relationship between the number of miles traveled and the amount of gas used typically reflects both correlation and causation. This is because as you travel more miles, you logically use more gas - this is a direct cause-and-effect relationship. The correlation is evident as the increase in one variable (miles traveled) is associated with an increase in the other (gas used). The causation is clear as the physical act of traveling miles in a gas-powered vehicle consumes fuel. This relationship is a straightforward example of causation where one variable directly affects the other.

Chapter

Direct and Inverse Variation

Math topics in this chapter:

Practices

Solve.

1) Let x and y be in direct variation $x=6$ and $y=22$. Then find the direct variation equation.
2) If $x=15$ and $y=30$ follow a direct variation, then find the constant of proportionality.
3) If y varies inversely as x and $x=5$ when $y=7$, what is the inverse variation equation?
4) Tell whether y varies inversely with x in the table below. If yes, write an equation for the inverse variation and show it in a graph.

x	y
2	12
4	6
6	4
8	3

5) If y varies directly with x and $y=8$ when $x=12$, find y when $x=-6$.
6) If y varies directly with x, find the missing value of x in $(-3,27)$ and $(x,-27)$.
7) If y varies directly as x and $y=12$ when $x=2$, find y when $x=8$.

Answers

1) $y=\frac{11}{3} x$
2) $k=2$
3) $y=\frac{35}{x}$
4) $y=\frac{24}{x}$

5) $y=-4$
6) $x=3$
7) $y=48$

Answers and Explanations

1. Direct variation means that $y=k x$, where k is the constant of proportionality. If $x=6$ and $y=22$, we can find k by rearranging the equation to $k=\frac{y}{x}$. Substituting the given values, $k=\frac{22}{6}=\frac{11}{3}$. So, the direct variation equation is $y=\frac{11}{3} x$.
2. Similarly, if $x=15$ and $y=30$ follow a direct variation, we find k using the same method: $k=\frac{y}{x}$. Substituting the given values, $k=\frac{30}{15}=2$. Thus, the constant of proportionality is 2 , indicating that y is always twice the value of x in this relationship.
3. Inverse variation means $y=\frac{k}{x}$, where k is the constant of variation. Given $x=5$ and $y=7$, we find k by rearranging the equation to $k=x y$. Substituting the given values, $k=5 \times 7=35$. So, the inverse variation equation is $y=\frac{35}{x}$.
4. The given data shows an inverse variation between x and y. In an inverse variation, the product of x and $y(x y)$ is constant. For each pair of values in the table, the product $x y$ is consistently $24(2 \times 12,4 \times 6,6 \times 4$, and $8 \times 3)$, indicating inverse variation. Since the constant k (the product of x and y) is 24 , the equation for this inverse variation is $y=\frac{24}{x}$. This equation means that the value of y is determined by dividing 24 by the value of x.

5. If y varies directly with x, the relationship between them can be expressed as $y=k x$, where k is the constant of proportionality. Given $y=8$ when $x=12$, we can find k by rearranging to $k=\frac{y}{x}$, which gives $k=\frac{8}{12}=\frac{2}{3}$. With this constant, the direct variation equation is $y=\frac{2}{3} x$. To find y when $x=-6$, substitute -6 for x in the equation: $y=\frac{2}{3}(-6)$. Therefore, when $x=-6, y=-4$.
6. In a direct variation where y varies directly with x, the ratio $\frac{y}{x}$ is constant. For the pair $(-3,27)$, the constant is $\frac{27}{-3}=-9$. To find the missing value of x in the pair $(x,-27)$, use the constant $-9: x=\frac{-27}{-9}=3$. Thus, the missing value of x is 3 .
7. For the direct variation where $y=12$ when $x=2$, first find the constant $k=$ $\frac{y}{x}=\frac{12}{2}=6$. The direct variation equation is $y=6 x$. To find y when $x=8$, substitute 8 into the equation: $y=6 \times 8=48$. Therefore, when $x=8, y=48$.

Chapter

Math topics in this chapter:

Practices

Solve.

1) Find the first four terms of the sequence with the general term.

$$
T_{n+1}=T_{n}+5, \text { where } n \geq 1 \text { and } T_{1}=-12 .
$$

2) Find a_{3}, where the first term is $a_{1}=1$, and the general term is $a_{n}=6 a_{n-1}$.
3) Find a_{6}, where the first term is $a_{1}=3$, and the general term is $a_{n}=a_{n-1}+$ 8.
4) Find the first four terms of the sequence with the general term $x_{n}=2(3)^{n}$, where n represents the position of a term in the sequence and starts with $n=1$.
5) Find the first three terms of the sequence with the general term $a_{n}=$ $-7 n-2$, where n represents the position of a term in the sequence and starts with $n=1$.
6) A sequence is defined by the formula $u_{n}=3 n+1$, calculate the first 4 terms of this sequence.
7) Write the general formula for the following sequence $42,84,126,168, \ldots$ in terms of variable k.
8) Find the variable expression corresponding to the following sequence. $-2,-6,-10,-14,-18, \ldots$
9) Write the general formula for the following sequence $-75,-74,-73,-72, \cdots$ in terms of variable n.
10) Write an equation to describe the following sequence. $1,-5,25, \ldots$.
11) Write the general formula for the following sequence. $2, \frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \frac{1}{128}, \ldots$
12) Find the general formula for the following sequence. $-2.5,-10,-40,-160, \ldots$
13) Find the recursive formula for the following arithmetic sequence: $1,6,11,16, \ldots$
14) Write the recursive formula for the following sequence: $4,11,25, \ldots$.
15) Find the recursive formula corresponding to the following sequence. $-1,-4,-16,-64, \ldots$

Algebra I for Beginners

Answers

1) $-12,-7,-2,3$
2) 36
3) 43
4) $6,18,54,162$
5) $-9,-16,-23$
6) $4,7,10,13$
7) $a_{k}=42 k$
8) $a_{n}=-4 n+2$
9) $a_{n}=n-76$
10) $a_{n}=1(-5)^{n-1}$
11) $a_{n}=2\left(\frac{1}{4}\right)^{n-1}$
12) $a_{n}=-2.5(4)^{n-1}$
13) $a_{n}=a_{n-1}+5, n \geq 2$
14) $a_{n+1}=a_{n}+7 n, n \geq 1$
15) $a_{n}=4 a_{n-1}, n \geq 2$

Answers and Explanations

1. In the sequence defined by $T_{n+1}=T_{n}+5$ with the first term $T_{1}=-12$ each term is found by adding 5 to the previous term. So, the first four terms are: $T_{1}=$ $-12 . T_{2}=T_{1}+5=-12+5=-7 . T_{3}=T_{2}+5=-7+5=-2 . T_{4}=T_{3}+5=-2+$ $5=3$. Thus, the first four terms are $-12,-7,-2$, and 3 .
2. For the sequence where $a_{n}=6 a_{n-1}$ with the first term $a_{1}=1, a_{3}$ is found by applying the formula twice (since $a_{3}=6 a_{2}$ and $a_{2}=6 a_{1}$): $a_{2}=6 \times a_{1}=6 \times 1=$ 6. $a_{3}=6 a_{2}=6 \times 6=36$. So, a_{3} is 36 .
3. In the sequence $a_{n}=a_{n-1}+8$ with $a_{1}=3$, to find a_{6}, we keep adding 8 to the previous term: $a_{2}=a_{1}+8=3+8=11$. Continue this process until a_{6} which will be $3+5 \times 8=43$ (since each term adds 8 , and there are 5 such additions from a_{1} to a_{6}).
4. The sequence with $x_{n}=2(3)^{n}$ tarts with $n=1$. The first four terms are: $x_{1}=$ $2(3)^{1}=6 . \quad x_{2}=2(3)^{2}=18 . x_{3}=2(3)^{3}=54 . x_{4}=2(3)^{4}=162$. So, the first four terms are $6,18,54$, and 162.
5. For the sequence defined by $a_{n}=-7 n-2$, the first three terms are: $a_{1}=$ $(-7 \times 1)-2=-9 . a_{2}=(-7 \times 2)-2=-16 . a_{3}=(-7 \times 3)-2=-23$. Thus, the first three terms are $-9,-16$, and -23 .
6. The sequence defined by $u_{n}=3 n+1$ generates terms by multiplying the position number n by 3 and then adding 1 . The first four terms are calculated as follows: $u_{1}=(3 \times 1)+1=4$. $u_{2}=(3 \times 2)+1=7$. $u_{3}=(3 \times 3)+1=10 . u_{4}=$ $(3 \times 4)+1=13$. So, the first four terms are $4,7,10$, and 13 .
7. To find the general formula for the sequence $42,84,126,168, \ldots$, notice that each term is 42 times a counting number. Specifically, the k-th term can be expressed as $42 k$, where k starts from 1 . This is because $42 \times 1=42,42 \times 2=84$, and so on. So, the final answer is $a_{k}=42 k$.
8. The sequence $-2,-6,-10,-14,-18, .$. decreases by 4 each time. A general expression for this sequence is given by $a_{n}=-2-4(n-1)=-4 n+2$, where n represents the position in the sequence. This formula starts at -2 for $n=1$ and subtracts 4 for each subsequent term.
9. The sequence $-75,-74,-73,-72$,.. increases by 1 each time. This can be represented by the formula $a_{n}=n-76$, where n is the position in the sequence. This starts at -75 for $n=1$ and increases by 1 as n increases.
10. This sequence is geometric, where each term is multiplied by -5 to get the next term (e.g., $1 \times(-5)=-5,(-5) \times(-5)=25$, etc.). The general formula for a geometric sequence is $a_{n}=a_{1} \times r^{n-1}$, where a_{n} is the nth term, a_{1} is the first
term, and r is the common ratio. Here, $a_{1}=1$ and $r=-5$. Thus, the formula for this sequence is $a_{n}=1(-5)^{n-1}$.
11. Each term in this sequence is a quarter of the previous one. In geometric sequences, the formula is $a_{n}=a_{1} \times r^{n-1}$. With the first term a_{1} as 2 and the ratio (r) as $\frac{1}{4}$, the formula becomes $a_{n}=2\left(\frac{1}{4}\right)^{n-1}$.
12. This sequence is also geometric, with each term being one-fourth of the previous term. Using the geometric sequence formula $a_{n}=a_{1} \times r^{n-1}$, where $a_{1}=$ 2 and $r=4$, the formula for this sequence is $a_{n}=-2.5 \times 4^{n-1}$.
13. This is an arithmetic sequence, where each term is 5 more than the previous term. The recursive formula for an arithmetic sequence is $a_{n}=a_{n-1}+d$ where d is the common difference. Here, $d=5$. So, the recursive formula is $a_{n}=a_{n-1}+5$ with $a_{1}=1$.
14. To find the rule that governs how the sequence progresses, we examine how each term is derived from its predecessor. The difference between the first and second terms is $11-4=7$. The difference between the second and third terms is $25-11=14$. Notice that the difference is increasing by a multiple of 7 each time. From the first to the second term, the increase is 7. From the second to the third, it's 7 multiplied by 2 . The formula $a_{n+1}=a_{n}+7 n$ captures this pattern. It states that to get the next term in the sequence $\left(a_{n+1}\right)$, you take the current term $\left(a_{n}\right)$ and add $7 \times n$ to it. Here, n is the position of the current term. So, the recursive formula is $a_{n+1}=a_{n}+7 n$ with $a_{1}=4$.
15. This sequence shows that each term is four times the previous one. To confirm this, divide each term by its preceding term (e.g., -4 divided by -1 equals $4,-16$ divided by -4 equals 4 , and so on). The recursive formula for this sequence can be represented as: $a_{n}=4 \times a_{n-1}$. where $a_{1}=-1$ (the first term in the sequence). This formula means that to get any term in the sequence (except the first one), you multiply the previous term by 4.

Build Your Math Skills: Our Top Book Picks!

Download eBooks (in PDF format) Instantly!

The Ulitimate Algebra Bundle From

Pre-Algebra to Algebra Il

Pre-Algebra + Algebra I + Algebra II

AlgebraI

 $2024=$ Beginners
tezo Matori $\quad \checkmark$ Recommended by Feachers and Studerts

Preenlocbra Practice Workbook
The Most Comprehensive |s (0) 0 nementrrabsemo 2024

Alocbrod Practice Workbook

The Most Comprethensive
Review of Algebra $\left.\left.\right|^{-r}\right)(0) ?$

Download

Our Most Popular Books!

Reza Nozari $\quad \checkmark$ Recommended by Teachers and Svidents

Reza Nazari $\quad \checkmark$ Recommended by Tecechers and Students

Download

Trigonometry
2024
 Beginners
Rezo Nazari \checkmark Recommended by Teachers and Sivdents

Download

Our Most Popular Books!

Preangebro Practice Workbook

The Most Comprehensive
Review of Pre-Algebra

Practice
Workbook
The Most Comprehensive
Review of Algebra II

Download

Download

... So Much More Online!

Effortless Math Online Algebra I Center offers a complete study program, including the following:
\checkmark Step-by-step instructions on how to prepare for the Algebra I test
\checkmark Numerous Algebra I worksheets to help you measure your math skills
\checkmark Complete list of Algebra I formulas
\checkmark Video lessons for all Algebra I topics
\checkmark Full-length Algebra I practice tests

$\sqrt{ }$ And much more...

No Registration Required.

Visit EffortlessMath.com/Algebra1 to find your online Algebra I resources.

Algebra Ifor Beginners

Algebra I for Beginners provides students with the confidence and math skills they need to succeed Algebra I course. This comprehensive study guide with hundreds of examples and over 1,500 skill building exercises is all you will ever need to fully prepare for the Algebra I final exam. It will help you hone your math skills, boost your confidence, and sharpen your problem-solving skills.

The surest way to succeed on Algebra I course is via rigorous practice in all the math topics reviewed in the course-this is what you'll find in the Algebra I for Beginners. Not only does this complete Algebra textbook offer everything you will ever need to succeed on Algebra I course, but it also contains two Algebra I practice tests to help you check your exam-readiness and identify where you need more practice.

Algebra I for Beginners includes many unique features to help you succeed on Algebra I course, including:
\checkmark Content aligned with national and state standards for Algebra I courses
\checkmark Complete coverage of all Algebra I concepts
\checkmark Dynamic design and easy-to-follow activities
\boldsymbol{V} A fun, interactive and concrete learning process
\checkmark Targeted, skill-building practices
\checkmark Fun exercises that build confidence
\checkmark All solutions for the exercises are included, so you will always find the answers
$\checkmark 2$ practice tests with detailed answers

The Most Effective Algebra I Study Guide

\checkmark Hone Your Math Skils
\checkmark Boost Your Confidence
\checkmark Overcome Your Exam Anxiety

EffortlessMath.com/Algebra1 for Online Algebra Resources

